8 research outputs found

    Analyzing Metabolic States of Adipogenic and Osteogenic Differentiation in Human Mesenchymal Stem Cells via Genome Scale Metabolic Model Reconstruction.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadSince their initial discovery in 1976, mesenchymal stem cells (MSCs) have been gathering interest as a possible tool to further the development and enhancement of various therapeutics within regenerative medicine. However, our current understanding of both metabolic function and existing differences within the varying cell lineages (e.g., cells in either osteogenesis or adipogenesis) is severely lacking making it more difficult to fully realize the therapeutic potential of MSCs. Here, we reconstruct the MSC metabolic network to understand the activity of various metabolic pathways and compare their usage under different conditions and use these models to perform experimental design. We present three new genome-scale metabolic models (GEMs) each representing a different MSC lineage (proliferation, osteogenesis, and adipogenesis) that are biologically feasible and have distinctive cell lineage characteristics that can be used to explore metabolic function and increase our understanding of these phenotypes. We present the most distinctive differences between these lineages when it comes to enriched metabolic subsystems and propose a possible osteogenic enhancer. Taken together, we hope these mechanistic models will aid in the understanding and therapeutic potential of MSCs. Keywords: GEM; MSCs; adipogenesis; metabolic differences; metabolic reconstruction; osteogenesis.Icelandic Research Fun

    A standalone bioreactor system to deliver compressive load under perfusion flow to hBMSC-seeded 3D chitosan-graphene templates.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadThe availability of engineered biological tissues holds great potential for both clinical applications and basic research in a life science laboratory. A prototype standalone perfusion/compression bioreactor system was proposed to address the osteogenic commitment of stem cells seeded onboard of 3D chitosan-graphene (CHT/G) templates. Testing involved the coordinated administration of a 1 mL/min medium flow rate together with dynamic compression (1% strain at 1 Hz; applied twice daily for 30 min) for one week. When compared to traditional static culture conditions, the application of perfusion and compression stimuli to human bone marrow stem cells using the 3D CHT/G template scaffold induced a sizable effect. After using the dynamic culture protocol, there was evidence of a larger number of viable cells within the inner core of the scaffold and of enhanced extracellular matrix mineralization. These observations show that our novel device would be suitable for addressing and investigating the osteogenic phenotype commitment of stem cells, for both potential clinical applications and basic research

    Human Bone-Marrow-Derived Stem-Cell-Seeded 3D Chitosan–Gelatin–Genipin Scaffolds Show Enhanced Extracellular Matrix Mineralization When Cultured under a Perfusion Flow in Osteogenic Medium

    Get PDF
    Publisher Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland.Tissue-engineered bone tissue grafts are a promising alternative to the more conventional use of natural donor bone grafts. However, choosing an appropriate biomaterial/scaffold to sustain cell survival, proliferation, and differentiation in a 3D environment remains one of the most critical issues in this domain. Recently, chitosan/gelatin/genipin (CGG) hybrid scaffolds have been proven as a more suitable environment to induce osteogenic commitment in undifferentiated cells when doped with graphene oxide (GO). Some concern is, however, raised towards the use of graphene and graphene-related material in medical applications. The purpose of this work was thus to check if the osteogenic potential of CGG scaffolds without added GO could be increased by improving the medium diffusion in a 3D culture of differentiating cells. To this aim, the level of extracellular matrix (ECM) mineralization was evaluated in human bone-marrow-derived stem cell (hBMSC)-seeded 3D CGG scaffolds upon culture under a perfusion flow in a dedicated custom-made bioreactor system. One week after initiating dynamic culture, histological/histochemical evaluations of CGG scaffolds were carried out to analyze the early osteogenic commitment of the culture. The analyses show the enhanced ECM mineralization of the 3D perfused culture compared to the static counterpart. The results of this investigation reveal a new perspective on more efficient clinical applications of CGG scaffolds without added GO.Peer reviewe

    Recommendations for in vitro evaluation of blood components collected, prepared and stored in non-DEHP medical devices

    Get PDF
    © 2022 International Society of Blood Transfusion. Funding Information: T.R.L.K., S.B. and D.K. led the working party and contributed to the writing of the manuscript. A.L., O.E.S., M.D.W., C.G., P.J.M.B., R.E., L.L., S.T., T.N., W.B., J.E. and B.M. contributed to the writing of the manuscript. Publisher Copyright: © 2022 International Society of Blood Transfusion.BACKGROUND AND OBJECTIVES: DEHP, di(2-ethylhexyl) phthalate, is the most common member of the class of ortho-phthalates, which are used as plasticizers. The Medical Device Regulation has restricted the use of phthalates in medical devices. Also DEHP has been added to the Annex XIV of REACH, "Registration, Evaluation, Authorisation and Restriction of Chemicals" due to its endocrine disrupting properties to the environment. As such, the sunset date for commercialisation of DEHP-containing blood bags is May 27th 2025. There are major concerns in meeting this deadline as these systems have not yet been fully validated and/or CE-marked. Also, since DEHP is known to affect red cell quality during storage, it is imperative to transit to non-DEHP without affecting blood product quality. Here, EBA members aim to establish common grounds on the evaluation and assessment of blood components collected, prepared and stored in non-DEHP devices. MATERIALS AND METHODS: Based on data as well as the input of relevant stakeholders a rationale for the validation of each component was composed. RESULTS: The red cell components will require the most extensive validation as their quality is directly affected by the absence of DEHP, as opposed to platelet and plasma components. CONCLUSION: Studies in the scope of evaluating the quality of blood products obtained with non-DEHP devices, under the condition that they are carried out according to these recommendations, could be used by all members of the EBA to serve as scientific support in the authorization process specific to their jurisdiction or for their internal validation use.Peer reviewe

    November [picture] /

    No full text
    Also available in an electronic version via the Internet at: http://nla.gov.au/nla.pic-an14108969-32; Exhibited: "Shadows in the dust : a contemporary portrait of Aboriginal station life". Touring exhibition, 1996-1998.Peter Sellars, Willie Lawrence and their horses drink from the dam whilst the mob of cattle they've mustered find shade from the stifling November heat, Glen Garland Station, Queensland, 199

    Eggshell-derived amorphous calcium phosphate: Synthesis, characterization and bio-functions as bone graft materials in novel 3D osteoblastic spheroids model

    Get PDF
    A multitude of autogenous/allogeneic and semi-synthetic bone graft materials have been developed to reconstruct the defective bone tissue but with high bio-cost and potential environmental pollution. With high calcium content and several trace elements, chicken eggshells are no longer considered as wastes but attractive sources of high-value-added biomaterials. This study used chicken eggshells and synthetic hydroxyapatite (HAp) to synthesize amorphous calcium phosphate (ACP) bone graft materials, namely Control and Eggshell. The physiochemical characteristics, biosafety, and immunocompatibility of synthetic ACP particles were inspected. Their osteogenic activity was further investigated in a novel osteoblastic spheroids model. Eggshell ACP particles exhibited ideal cytocompatibility compared to the control ACP and were more resistant to re-crystallization. In osteoblastic spheroids, Eggshell ACP mediated typical osteogenic mRNA profiles of MC-3T3-E1 cells, accompanied by the increased formation of mineralized nodules and boosted synthesis of ECM proteins represented by OPN and collagen I. This study establishes a promising technique to synthesize stable, safe, and osteoinductive ACP graft particles from eggshell waste. Furthermore, the osteoblastic spheroids constructed in the present study provide a more practical model for biomaterial research, which reflect the three-dimensional interaction between host bone tissue and graft materials more realistically

    Protein Concentrations in Stored Pooled Platelet Concentrates Treated with Pathogen Inactivation by Amotosalen Plus Ultraviolet a Illumination

    No full text
    Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Platelet granules contain a diverse group of proteins. Upon activation and during storage, platelets release a number of proteins into the circulation or supernatant of stored platelet concentrate (PC). The aim of this work was to investigate the effect of pathogen inactivation (PI) on a selection of proteins released in stored platelets. Materials and Methods: PCs in platelet additive solution (PAS) were produced from whole blood donations using the buffy coat (BC) method. PCs in the treatment arm were pathogen inactivated with amotosalen and UVA, while PCs in the second arm were used as an untreated platelet control. Concentrations of 36 proteins were monitored in the PCs during storage. Results: The majority of proteins increased in concentration over the storage period. In addition, 10 of the 29 proteins that showed change had significantly different concentrations between the PI treatment and the control at one or more timepoints. A subset of six proteins displayed a PI-related drop in concentration. Conclusions: PI has limited effect on protein concentration stored PC supernatant. The protein’s changes related to PI treatment with elevated concentration implicate accelerated Platelet storage lesion (PSL); in contrast, there are potential novel benefits to PI related decrease in protein concentration that need further investigation.Peer reviewe
    corecore