2,478 research outputs found

    The Vela pulsar `jet': a companion-punctured bubble of fallback material

    Get PDF
    Markwardt and Oegelman (1995) used ROSAT to reveal a 12 by 45 arcmin structure in 1 keV X rays around the Vela pulsar, which they interpret as a jet emanating from the pulsar. We here present an alternative view of the nature of this feature, namely that it consists of material from very deep inside the exploding star, close to the mass cut between material that became part of the neutron star and ejected material. The initial radial velocity of the inner material was lower than the bulk of the ejecta, and formed a bubble of slow material that started expanding again due to heating by the young pulsar's spindown energy. The expansion is mainly in one direction, and to explain this we speculate that the pre-supernova system was a binary. The explosion caused the binary to unbind, and the pulsar's former companion carved a lower-density channel into the main ejecta. The resulting puncture of the bubble's edge greatly facilitated expansion along its path relative to other directions. If this is the case, we can estimate the current speed of the former binary companion and from this reconstruct the presupernova binary orbit. It follows that the exploding star was a helium star, hence that the supernova was of type Ib. Since the most likely binary companion is another neutron star, the evolution of the Vela remnant and its surroundings has been rather more complicated than the simple expansion of one supernova blast wave into unperturbed interstellar material.Comment: submitted to MNRAS; 6 pages laTeX, 3 figures (1 postscript, 2 gif files of images

    Aharonov-Bohm effect for excitons in a semiconductor quantum ring dressed by circularly polarized light

    Full text link
    We show theoretically that the strong coupling of circularly polarized photons to an exciton in ring-like semiconductor nanostructures results in physical nonequivalence of clockwise and counterclockwise exciton rotations in the ring. As a consequence, the stationary energy splitting of exciton states corresponding to these mutually opposite rotations appears. This excitonic Aharonov-Bohm effect depends on the intensity and frequency of the circularly polarized field and can be detected in state-of-the-art optical experiments.Comment: Published versio

    The Survival Rate of Ejected Terrestrial Planets with Moons

    Full text link
    During planet formation, a gas giant will interact with smaller protoplanets that stray within its sphere of gravitational influence. We investigate the outcome of interactions between gas giants and terrestrial-sized protoplanets with lunar-sized companions. An interaction between a giant planet and a protoplanet binary may have one of several consequences, including the delivery of volatiles to the inner system, the capture of retrograde moons by the giant planet, and the ejection of one or both of the protoplanets. We show that an interesting fraction of terrestrial-sized planets with lunar sized companions will likely be ejected into interstellar space with the companion bound to the planet. The companion provides an additional source of heating for the planet from tidal dissipation of orbital and spin angular momentum. This heat flux typically is larger than the current radiogenic heating of the Earth for up to the first few hundred million years of evolution. In combination with an atmosphere of sufficient thickness and composition, the heating can provide the conditions necesary for liquid water to persist on the surface of the terrestrial mass planet, making it a potential site for life. We also determine the possibility for directly detecting such systems through all-sky infrared surveys or microlensing surveys. Microlensing surveys in particular will directly measure the frequency of this phenomenon.Comment: 4 pages, 2 figures, Accepted to ApJ

    Much Ado About Time: Exhaustive Annotation of Temporal Data

    Full text link
    Large-scale annotated datasets allow AI systems to learn from and build upon the knowledge of the crowd. Many crowdsourcing techniques have been developed for collecting image annotations. These techniques often implicitly rely on the fact that a new input image takes a negligible amount of time to perceive. In contrast, we investigate and determine the most cost-effective way of obtaining high-quality multi-label annotations for temporal data such as videos. Watching even a short 30-second video clip requires a significant time investment from a crowd worker; thus, requesting multiple annotations following a single viewing is an important cost-saving strategy. But how many questions should we ask per video? We conclude that the optimal strategy is to ask as many questions as possible in a HIT (up to 52 binary questions after watching a 30-second video clip in our experiments). We demonstrate that while workers may not correctly answer all questions, the cost-benefit analysis nevertheless favors consensus from multiple such cheap-yet-imperfect iterations over more complex alternatives. When compared with a one-question-per-video baseline, our method is able to achieve a 10% improvement in recall 76.7% ours versus 66.7% baseline) at comparable precision (83.8% ours versus 83.0% baseline) in about half the annotation time (3.8 minutes ours compared to 7.1 minutes baseline). We demonstrate the effectiveness of our method by collecting multi-label annotations of 157 human activities on 1,815 videos.Comment: HCOMP 2016 Camera Read

    Vortices in spinor cold exciton condensates with spin-orbit interaction

    Full text link
    We study theoretically the ground states of topological defects in a spinor four-component condensate of cold indirect excitons. We analyze possible ground state solutions for different configurations of vortices and half-vortices. We show that if only Rashba or Dreselhaus spin-orbit interaction (SOI) for electrons is present the stable states of topological defects can represent a cylindrically symmetric half-vortex or half vortex-antivortex pairs, or a non-trivial pattern with warped vortices. In the presence of both of Rashba and Dresselhaus SOI the ground state of a condensate represents a stripe phase and vortex type solutions become unstable

    Information processing with topologically protected vortex memories in exciton-polariton condensates

    Full text link
    We show that in a non-equilibrium system of an exciton-polariton condensate, where polaritons are generated from incoherent pumping, a ring-shaped pump allows for stationary vortex memory elements of topological charge m=1m = 1 or m=1m = -1. Using simple potential guides we can choose whether to copy the same charge or invert it onto another spatially separate ring pump. Such manipulation of binary information opens the possibility of a new type processing using vortices as topologically protected memory components

    Temporal Relational Reasoning in Videos

    Full text link
    Temporal relational reasoning, the ability to link meaningful transformations of objects or entities over time, is a fundamental property of intelligent species. In this paper, we introduce an effective and interpretable network module, the Temporal Relation Network (TRN), designed to learn and reason about temporal dependencies between video frames at multiple time scales. We evaluate TRN-equipped networks on activity recognition tasks using three recent video datasets - Something-Something, Jester, and Charades - which fundamentally depend on temporal relational reasoning. Our results demonstrate that the proposed TRN gives convolutional neural networks a remarkable capacity to discover temporal relations in videos. Through only sparsely sampled video frames, TRN-equipped networks can accurately predict human-object interactions in the Something-Something dataset and identify various human gestures on the Jester dataset with very competitive performance. TRN-equipped networks also outperform two-stream networks and 3D convolution networks in recognizing daily activities in the Charades dataset. Further analyses show that the models learn intuitive and interpretable visual common sense knowledge in videos.Comment: camera-ready version for ECCV'1
    corecore