676 research outputs found

    Cosmic 21-cm Delensing of Microwave Background Polarization and the Minimum Detectable Energy Scale of Inflation

    Get PDF
    The curl (B) modes of cosmic microwave background (CMB) polarization anisotropies are a unique probe of the primordial background of inflationary gravitational waves (IGWs). Unfortunately, the B-mode polarization anisotropies generated by gravitational waves at recombination are confused with those generated by the mixing of gradient-mode (E-mode) and B-mode polarization anisotropies as CMB photons propagate through the Universe and are gravitationally lensed. We describe here a method for delensing CMB polarization anisotropies using observations of anisotropies in the cosmic 21-cm radiation emitted or absorbed by neutral hydrogen atoms at redshifts 10 to 200. While the detection of cosmic 21-cm anisotropies at high resolution is challenging, a combined study with a relatively low-resolution (but high-sensitivity) CMB polarization experiment could probe inflationary energy scales well below the Grand Unified Theory (GUT) scale of 10^{16} GeV -- constraining models with energy scales below 10^{15} GeV (the detectable limit derived from CMB observations alone). The ultimate theoretical limit to the detectable inflationary energy scale via this method may be as low as 3 \times 10^{14} GeV.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Cosmological Signatures of Interacting Neutrinos

    Get PDF
    We investigate signatures of neutrino scattering in the Cosmic Microwave Background (CMB) and matter power spectra, and the extent to which present cosmological data can distinguish between a free streaming or tightly coupled fluid of neutrinos. If neutrinos have strong non-standard interactions, for example, through the coupling of neutrinos to a light boson, they may be kept in equilibrium until late times. We show how the power spectra for these models differ from more conventional neutrino scenarios, and use CMB and large scale structure data to constrain these models. CMB polarization data improves the constraints on the number of massless neutrinos, while the Lyman--α\alpha power spectrum improves the limits on the neutrino mass. Neutrino mass limits depend strongly on whether some or all of the neutrino species interact and annihilate. The present data can accommodate a number of tightly-coupled relativistic degrees of freedom, and none of the interacting-neutrino scenarios considered are ruled out by current data -- although considerations regarding the age of the Universe disfavor a model with three annihilating neutrinos with very large neutrino masses.Comment: 17 pages, 14 figures, minor changes and references added, published in Phys. Rev.

    Measuring the Primordial Deuterium Abundance During the Cosmic Dark Ages

    Get PDF
    We discuss how measurements of fluctuations in the absorption of cosmic microwave background (CMB) photons by neutral gas during the cosmic dark ages, at redshifts z ~ 7--200, could reveal the primordial deuterium abundance of the Universe. The strength of the cross-correlation of brightness-temperature fluctuations due to resonant absorption of CMB photons in the 21-cm line of neutral hydrogen with those due to resonant absorption of CMB photons in the 92-cm line of neutral deuterium is proportional to the fossil deuterium to hydrogen ratio [D/H] fixed during big bang nucleosynthesis (BBN). Although technically challenging, this measurement could provide the cleanest possible determination of [D/H], free from contamination by structure formation processes at lower redshifts, and has the potential to improve BBN constraints to the baryon density of the Universe \Omega_{b} h^2. We also present our results for the thermal spin-change cross-section for deuterium-hydrogen scattering, which may be useful in a more general context than we describe here.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Preoperative FDG-PET/CT Is an Important Tool in the Management of Patients with Thick (T4) Melanoma

    Get PDF
    The yield of preoperative PET/CT (PET/CT) for regional and distant metastases for thin/intermediate thickness melanoma is low. Objective of this study is to determine if PET/CT performed for T4 melanomas helps guide management and alter treatment plans. Methods. Retrospective cohort of 216 patients with T4 melanomas treated at two tertiary institutions. Fifty-six patients met our inclusion criteria (T4 lesion, PET/CT and no clinical evidence of metastatic disease). Results. Fifty-six patients (M: 32, F: 24) with median tumor thickness of 6 mm were identified. PET/CT recognized twelve with regional and four patients with metastatic disease. Melanoma-related treatment plan was altered in 11% of the cases based on PET/CT findings. PET/CT was negative 60% of the time, in 35% of the cases; it identified incidental findings that required further evaluation. Conclusion. Patients with T4 lesions, PET/CT changed the treatment plan 18% of the time. Regional findings changed the surgical treatment plan in 11% and the adjuvant plan in 7% of our cases due to the finding of metastatic disease. Additionally 20 patients had incidental findings that required further workup. In this subset of patients, we feel there is a benefit to PET/CT, and further studies should be performed to validate our findings

    Cosmic 21-cm Fluctuations as a Probe of Fundamental Physics

    Full text link
    Fluctuations in high-redshift cosmic 21-cm radiation provide a new window for observing unconventional effects of high-energy physics in the primordial spectrum of density perturbations. In scenarios for which the initial state prior to inflation is modified at short distances, or for which deviations from scale invariance arise during the course of inflation, the cosmic 21-cm power spectrum can in principle provide more precise measurements of exotic effects on fundamentally different scales than corresponding observations of cosmic microwave background anisotropies.Comment: 8 pages, 2 figure

    Experimental Oral Transmission of Chronic Wasting Disease to Reindeer (Rangifer tarandus tarandus)

    Get PDF
    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, remains prevalent in North American elk, white-tailed deer and mule deer. A natural case of CWD in reindeer (Rangifer tarandus tarandus) has not been reported despite potential habitat overlap with CWD-infected deer or elk herds. This study investigates the experimental transmission of CWD from elk or white-tailed deer to reindeer by the oral route of inoculation. Ante-mortem testing of the three reindeer exposed to CWD from white-tailed deer identified the accumulation of pathological PrP (PrPCWD) in the recto-anal mucosa associated lymphoid tissue (RAMALT) of two reindeer at 13.4 months post-inoculation. Terminal CWD occurred in the two RAMALT-positive reindeer at 18.5 and 20 months post-inoculation while one other reindeer in the white-tailed deer CWD inoculum group and none of the 3 reindeer exposed to elk CWD developed disease. Tissue distribution analysis of PrPCWD in CWD-affected reindeer revealed widespread deposition in central and peripheral nervous systems, lymphoreticular tissues, the gastrointestinal tract, neuroendocrine tissues and cardiac muscle. Analysis of prion protein gene (PRNP) sequences in the 6 reindeer identified polymorphisms at residues 2 (V/M), 129 (G/S), 138 (S/N) and 169 (V/M). These findings demonstrate that (i) a sub-population of reindeer are susceptible to CWD by oral inoculation implicating the potential for transmission to other Rangifer species, and (ii) certain reindeer PRNP polymorphisms may be protective against CWD infection

    The Quintessential CMB, Past & Future

    Get PDF
    The past, present and future of cosmic microwave background (CMB) anisotropy research is discussed, with emphasis on the Boomerang and Maxima balloon experiments. These data are combined with large scale structure (LSS) information and high redshift supernova (SN1) observations to explore the inflation-based cosmic structure formation paradigm. Here we primarily focus on a simplified inflation parameter set, {omega_b,omega_{cdm},Omega_{tot}, Omega_Q,w_Q, n_s,tau_C, sigma_8}. After marginalizing over the other cosmic and experimental variables, we find the current CMB+LSS+SN1 data gives Omega_{tot}=1.04\pm 0.05, consistent with (non-baroque) inflation theory. Restricting to Omega_{tot}=1, we find a nearly scale invariant spectrum, n_s =1.03 \pm 0.07. The CDM density, omega_{cdm}=0.17\pm 0.02, is in the expected range, but the baryon density, omega_b=0.030\pm 0.004, is slightly larger than the current nucleosynthesis estimate. Substantial dark energy is inferred, Omega_Q\approx 0.68\pm 0.05, and CMB+LSS Omega_Q values are compatible with the independent SN1 estimates. The dark energy equation of state, parameterized by a quintessence-field pressure-to-density ratio w_Q, is not well determined by CMB+LSS (w_Q<-0.3 at 95%CL), but when combined with SN1 the resulting w_Q<-0.7 limit is quite consistent with the w_Q=-1 cosmological constant case. Though forecasts of statistical errors on parameters for current and future experiments are rosy, rooting out systematic errors will define the true progress.Comment: 14 pages, 3 figs., in Proc. CAPP-2000 (AIP), CITA-2000-6

    Charged-particle decay and suppression of small-scale power

    Get PDF
    We study the suppression of the small-scale power spectrum due to the decay of charged matter to dark matter prior to recombination. Prior to decay, the charged particles couple to the photon-baryon fluid and participate in its acoustic oscillations. However, after decaying to neutral dark matter the photon-baryon fluid is coupled only gravitationally to the newly-created dark matter. This generically leads to suppression of power on length scales that enter the horizon prior to decay. For decay times of approximately 3.5 years this leads to suppression of power on subgalactic scales, bringing the observed number of Galactic substructures in line with observation. Decay times of a few years are possible if the dark matter is purely gravitationally interacting, such as the gravitino in supersymmetric models or a massive Kaluza-Klein graviton in models with universal extra dimensions.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Complex folding and misfolding effects of deer-specific amino acid substitutions in the β2-α2 loop of murine prion protein

    Get PDF
    The β2–α2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the β2–α2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the β2–α2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region
    corecore