3 research outputs found

    Amyotrophic lateral sclerosis phenotypes significantly differ in terms of magnetic susceptibility properties of the precentral cortex

    Get PDF
    The aim of our study was to investigate whether the magnetic susceptibility varies according to the amyotrophic lateral sclerosis (ALS) phenotypes based on the predominance of upper motor neuron (UMN)/lower motor neuron (LMN) impairment. We retrospectively collected imaging and clinical data of 47 ALS patients (12 with UMN predominance (UMN-ALS), 16 with LMN predominance (LMN-ALS), and 19 with no clinically defined predominance (Np-ALS)). We further enrolled 23 healthy controls (HC) and 15 ALS mimics (ALS-Mim). These participants underwent brain 3-T magnetic resonance imaging (3-T MRI) with T1-weighted and gradient-echo multi-echo sequences. Automatic segmentation and quantitative susceptibility mapping (QSM) were performed. The skewness of the susceptibility values in the precentral cortex (SuscSKEW) was automatically computed, compared among the groups, and correlated to the clinical variables. The Kruskal-Wallis test showed significant differences in terms of SuscSKEW among groups (χ2(3) = 24.2, p < 0.001), and pairwise tests showed that SuscSKEW was higher in UMN-ALS compared to those in LMN-ALS (p < 0.001), HC (p < 0.001), Np-ALS (p = 0.012), and ALS-Mim (p < 0.001). SuscSKEW was highly correlated with the Penn UMN score (Spearman's rho 0.612, p < 0.001). This study demonstrates that the clinical ALS phenotypes based on UMN/LMN sign predominance significantly differ in terms of magnetic susceptibility properties of the precentral cortex. Combined MRI-histopathology investigations are strongly encouraged to confirm whether this evidence is due to iron overload in UMN-ALS, unlike in LMN-ALS. • Magnetic susceptibility in the precentral cortex reflects the prevalence of UMN/LMN impairment in the clinical ALS phenotypes. • The degree of UMN/LMN impairment might be well described by the automatically derived measure of SuscSKEW in the precentral cortex. • Increased SuscSKEW in the precentral cortex is more relevant in UMN-ALS patients compared to those in Np-ALS and LMN-ALS patients

    Magnetic susceptibility as a 1-year predictor of outcome in familial cerebral cavernous malformations: a pilot study

    No full text
    Objectives: To test whether quantitative susceptibility mapping (QSM) of cerebral cavernous malformations (CCMs) assessed at baseline may predict the presence or absence of haemorrhagic signs at 1-year follow-up. Methods: Familial CCM patients were enrolled in the longitudinal multicentre study Treat-CCM. The 3-T MRI scan allowed performing a semi-automatic segmentation of CCMs and computing the maximum susceptibility in each segmented CCM (QSMmax) at baseline. CCMs were classified as haemorrhagic and non-haemorrhagic at baseline and then subclassified according to the 1-year (t1) evolution. Between-group differences were tested, and the diagnostic accuracy of QSMmax in predicting the presence or absence of haemorrhagic signs in CCMs was calculated with ROC analyses. Results: Thirty-three patients were included in the analysis, and a total of 1126 CCMs were segmented. QSMmax was higher in haemorrhagic CCMs than in non-haemorrhagic CCMs (p &lt; 0.001). In haemorrhagic CCMs at baseline, the accuracy of QSMmax in differentiating CCMs that were still haemorrhagic from CCMs that recovered from haemorrhage at t1 calculated as area under the curve (AUC) was 0.78 with sensitivity 62.69%, specificity 82.35%, positive predictive value (PPV) 93.3% and negative predictive value (NPV) 35.9% (QSMmax cut-off ≥ 1462.95 ppb). In non-haemorrhagic CCMs at baseline, AUC was 0.91 in differentiating CCMs that bled at t1 from stable CCMs with sensitivity 100%, specificity 81.9%, PPV 5.1%, and NPV 100% (QSMmax cut-off ≥ 776.29 ppb). Conclusions: The QSMmax in CCMs at baseline showed high accuracy in predicting the presence or absence of haemorrhagic signs at 1-year follow-up. Further effort is required to test the role of QSM in follow-up assessment and therapeutic trials in multicentre CCM studies. Key points: • QSM in semi-automatically segmented CCM was feasible. • The maximum magnetic susceptibility in a single CCM at baseline may predict the presence or absence of haemorrhagic signs at 1-year follow-up. • Multicentric studies are needed to enforce the role of QSM in predicting the CCMs' haemorrhagic evolution in patients affected by familial and sporadic forms

    Quantitative susceptibility mapping of the normal-appearing white matter as a potential new marker of disability progression in multiple sclerosis

    No full text
    Objectives To investigate the normal-appearing white matter (NAWM) susceptibility in a cohort of newly diagnosed multiple sclerosis (MS) patients and to evaluate possible correlations between NAWM susceptibility and disability progression.Methods Fifty-nine patients with a diagnosis of MS (n = 53) or clinically isolated syndrome (CIS) (n = 6) were recruited and followed up. All participants underwent neurological examination, blood sampling for serum neurofilament light chain (sNfL) level assessment, lumbar puncture for the quantification of cerebrospinal fluid (CSF) beta-amyloid1-42 (A beta) levels, and brain MRI. T2-weighted scans were used to quantify white matter (WM) lesion loads. For each scan, we derived the NAWM volume fraction and the WM lesion volume fraction. Quantitative susceptibility mapping (QSM) of the NAWM was calculated using the susceptibility tensor imaging (STI) suite. Susceptibility maps were computed with the STAR algorithm.Results Primary progressive patients (n = 9) showed a higher mean susceptibility value in the NAWM than relapsing-remitting (n = 44) and CIS (n = 6) (p = 0.01 and p = 0.02). Patients with a higher susceptibility in the NAWM showed increased sNfL concentration (rho = 0.38, p = 0.004) and lower CSF A beta levels (rho = -0.34, p = 0.009). Mean NAWM susceptibility turned out to be a predictor of the expanded disability status scale (EDSS) worsening at follow-up (beta = 0.41, t = 2.66, p = 0.01) and of the MS severity scale (MSSS) (0 = 0.38, t = 2.43, p = 0.019).Conclusions QSM in the NAWM seems to predict the EDSS increment over time. This finding might provide evidence on the role of QSM in identifying patients with an increased risk of early disability progression
    corecore