30 research outputs found

    Malnutrition in Sub – Saharan Africa: burden, causes and prospects

    Get PDF
    Malnutrition is estimated to contribute to more than one third of all child deaths, although it is rarely listed as the direct cause. Contributing to more than half of deaths in children worldwide; child malnutrition was associated with 54% of deaths in children in developing countries in 2001. Poverty remains the major contributor to this ill. The vicious cycle of poverty, disease and illness aggravates this situation. Grooming undernourished children causes children to start life at mentally sub optimal levels. This becomes a serious developmental threat. Lack of education especially amongst women disadvantages children, especially as far as healthy practices like breastfeeding and child healthy foods are concerned. Adverse climatic conditions have also played significant roles like droughts, poor soils and deforestation. Sociocultural barriers are major hindrances in some communities, with female children usually being the most affected. Corruption and lack of government interest and investment are key players that must be addressed to solve this problem. A multisectorial approach is vital in tackling this problem. Improvement in government  policy, fight against corruption, adopting a horizontal approach in implementing programmes at community level must be recognized. Genetically modified foods to increase food production and to survive adverse climatic conditions could be gateways in solving these problems. Socio cultural peculiarities of each community are an essential base line consideration for the implementation of any nutrition health promotion programs.Key words: Malnutrition, Sub–Saharan Africa, corruption, multisectorial approac

    Mapping Peptidergic Cells in Drosophila: Where DIMM Fits In

    Get PDF
    The bHLH transcription factor DIMMED has been associated with the differentiation of peptidergic cells in Drosophila. However, whether all Drosophila peptidergic cells express DIMM, and the extent to which all DIMM cells are peptidergic, have not been determined. To address these issues, we have mapped DIMM expression in the central nervous system (CNS) and periphery in the late larval stage Drosophila. At 100 hr after egg-laying, DIMM immunosignals are largely congruent with a dimm-promoter reporter (c929-GAL4) and they present a stereotyped pattern of 306 CNS cells and 52 peripheral cells. We assigned positional values for all DIMM CNS cells with respect to reference gene expression patterns, or to patterns of secondary neuroblast lineages. We could assign provisional peptide identities to 68% of DIMM-expressing CNS cells (207/306) and to 73% of DIMM-expressing peripheral cells (38/52) using a panel of 24 markers for Drosophila neuropeptide genes. Furthermore, we found that DIMM co-expression was a prevalent feature within single neuropeptide marker expression patterns. Of the 24 CNS neuropeptide gene patterns we studied, six patterns are >90% DIMM-positive, while 16 of 22 patterns are >40% DIMM-positive. Thus most or all DIMM cells in Drosophila appear to be peptidergic, and many but not all peptidergic cells express DIMM. The co-incidence of DIMM-expression among peptidergic cells is best explained by a hypothesis that DIMM promotes a specific neurosecretory phenotype we term LEAP. LEAP denotes Large cells that display Episodic release of Amidated Peptides

    Major shear zones of southern Brazil and Uruguay: escape tectonics in the eastern border of Rio de La plata and Paranapanema cratons during the Western Gondwana amalgamation

    Get PDF
    corecore