20 research outputs found

    Factors associated with shunt dynamic in patients with cryptogenic stroke and patent foramen ovale: an observational cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As previously reported there is evidence for a reduction in right to left shunt (RLS) in stroke patients with patent foramen ovale (PFO). This occurs predominantly in patients with cryptogenic stroke (CS). We therefore analysed factors associated with a shunt reduction on follow-up in stroke patients suffering of CS.</p> <p>Methods</p> <p>On index event PFO and RLS were proven by transesophageal echocardiography and contrast-enhanced transcranial Doppler-sonography (ce-TCD). Silent PE was proved by ventilation perfusion scintigraphy (V/Q) within the stroke work-up on index event; all scans were re-evaluated in a blinded manner by two experts. The RLS was re-assessed on follow-up by ce-TCD. A reduction in shunt volume was defined as a difference of ≄20 microembolic signals (MES) or the lack of evidence of RLS on follow-up. For subsequent analyses patients with CS were considered; parameters such as deep vein thrombosis (DVT) and silent pulmonary embolism (PE) were analysed.</p> <p>Results</p> <p>In 39 PFO patients suffering of a CS the RLS was re-assessed on follow-up. In all patients (n = 39) with CS a V/Q was performed; the median age was 40 years, 24 (61.5%) patients were female. In 27 patients a reduction in RLS was evident. Silent PE was evident in 18/39 patients (46.2%). Factors such as atrial septum aneurysm, DVT or even silent PE were not associated with RLS dynamics. A greater time delay from index event to follow-up assessment was associated with a decrease in shunt volume (median 12 vs. 6 months, <it>p </it>= 0.013).</p> <p>Conclusions</p> <p>In patients with CS a reduction in RLS is not associated with the presence of a venous embolic event such as DVT or silent PE. A greater time delay between the initial and the follow-up investigation increases the likelihood for the detection of a reduction in RLS.</p

    The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer

    Get PDF
    There is a long‐standing association between wound healing and cancer, with cancer often described as a “wound that does not heal”. However, little is known about how wounding, such as following surgery, biopsy collection or ulceration, might impact on cancer progression. Here, we use a translucent zebrafish larval model of RasG12V‐driven neoplasia to image the interactions between inflammatory cells drawn to a wound, and to adjacent pre‐neoplastic cells. We show that neutrophils are rapidly diverted from a wound to pre‐neoplastic cells and these interactions lead to increased proliferation of the pre‐neoplastic cells. One of the wound‐inflammation‐induced trophic signals is prostaglandin E2 (PGE2). In an adult model of chronic wounding in zebrafish, we show that repeated wounding with subsequent inflammation leads to a greater incidence of local melanoma formation. Our zebrafish studies led us to investigate the innate immune cell associations in ulcerated melanomas in human patients. We find a strong correlation between neutrophil presence at sites of melanoma ulceration and cell proliferation at these sites, which is associated with poor prognostic outcome

    Persistent increase in cardiac troponin I in Fabry disease: a case report

    No full text
    Abstract Background Hypertrophic cardiomyopathy is a frequent manifestation in Fabry disease (FD) - an X-linked lysosomal storage disorder caused by reduced activity of the enzyme α-galactosidase A. In FD an elevation of specific cardiac biomarkers, such as cardiac troponin I (cTNI) has been reported in case of clinical manifestation suggestive of myocardial ischemia. In diagnosing acute myocardial infarction cTNI is considered the most reliable parameter. Case Presentation In the referred case we present a 59 years old female patient with the diagnosis of FD presenting with persistently increased cTNI level (lowest value 0.46 ng/ml, highest value 0.69 ng/ml; normal range Conclusions Our case report demonstrates a persistent cTNI release in FD with cardiac involvement. Proving the persistence in a symptom free interval, it might be related to a direct damage of myocytes. In FD cTNI could serve as a beneficial long term parameter providing new perspectives for screening strategies.</p

    Continuous cardiac troponin I release in Fabry disease.

    No full text
    Fabry disease (FD) is a rare lysosomal storage disorder also affecting the heart. The aims of this study were to determine the frequency of cardiac troponin I (cTNI) elevation, a sensitive parameter reflecting myocardial damage, in a smaller cohort of FD-patients, and to analyze whether persistent cTNI can be a suitable biomarker to assess cardiac dysfunction in FD.cTNI values were determined at least twice per year in 14 FD-patients (6 males and 8 females) regularly followed-up in our centre. The data were related to other parameters of heart function including cardiac magnetic resonance imaging (cMRI).Three patients (21%) without specific vascular risk factors other than FD had persistent cTNI-elevations (range 0.05-0.71 ng/ml, normal: <0.01). cMRI disclosed late gadolinium enhancement (LGE) in all three individuals with cTNI values ≄0.01, while none of the 11 patients with cTNI <0.01 showed a pathological enhancement (p<0.01). Two subjects with increased cTNI-values underwent coronary angiography, excluding relevant stenoses. A myocardial biopsy performed in one during this procedure demonstrated substantial accumulation of globotriaosylceramide (Gb3) in cardiomyocytes.Continuous cTNI elevation seems to occur in a substantial proportion of patients with FD. The high accordance with LGE, reflecting cardiac dysfunction, suggests that cTNI-elevation can be a useful laboratory parameter for assessing myocardial damage in FD

    Cardiac troponin I: a valuable biomarker indicating the cardiac involvement in fabry disease

    No full text
    Objectives: Assessment of the clinical severity of Fabry disease (FD), an X-linked, rare, progressive disorder based on a genetic defect in alpha-galactosidase is challenging, especially regarding cardiac involvement. The aim of the study was to evaluate the diagnostic value of cardiac troponin I (cTnI) in discriminating FD patients with cardiac involvement in a large FD patient cohort. Methods: cTnI levels were measured with a contemporary sensitive assay in plasma samples taken routinely from FD patients. The assay was calibrated to measure cTnI levels ≄0.01 ng/ml. Elevated cTnI values (cut-off ≄0.04 ng/ml) were correlated with clinical data. Results: cTnI was assessed in 62 FD patients (median age: 47 years, males: 36%). Elevated cTnI levels were detected in 23 (37%) patients. Patients with a cTnI elevation were older (median 55 years versus 36 years, p<0.001). Elevated cTnI levels were associated with the presence of a LVH (16/23 versus 1/39; OR 65.81, CI: 6.747–641.859; p<0.001). In almost all patients with a left ventricular hypertrophy (LVH) elevated cTnI levels were detected (16/17, 94%). Absolute cTnI levels in patients with LVH were higher than in those without (median 0.23 ng/ml versus 0.02 ng/ml; p<0.001). A cTnI level <0.04ng/ml had a high negative predictive value regarding the presence of a LVH (38/39, 97%). In a control group of non-FD patients (n = 17) with LVH (due to hypertension) none showed cTnI levels ≄0.01 ng/ml. Conclusions: Elevated cTnI levels are common in FD patients, reflecting cardiac involvement. FD patients might benefit from a continuous cTnI monitoring

    Baseline data, medical history, biomarkers and cardiac work up in patients with FD in relation to cardiac troponin I elevation and normal values.

    No full text
    <p>*a small fibre dysfunction was proved by quantitative sensory testing or by skin biopsy.</p>†<p>measurement end-diastolic in the posterior wall of the left ventricle.</p>$<p>Arrhythmia was considered if one of the following conditions was detected: persistent or intermittent atrial fibrillation of flatter, sustained tachycardia (heart rate ≄100/minute for more than 30 seconds), non-sustained tachycardia (heart rate ≄100/minute for less than 30 seconds in at least 3 subsequent hear cycles), incomplete bundle branch block (QRS-duration: 100–119 ms) or complete bundle branch block (QRS-duration ≄120 ms).</p>§<p>lower level of quantification.</p

    Cardiac work up in patient 2.

    No full text
    <p>A+B: Coronary angiography (A: right coronary artery; B: left coronary artery) demonstrating no relevant pathology. C+D: Cardiac MRI showing increase in myocardial wall thickness (C) and pathological late gadolinium enhancement (D, arrow). E: Myocardial biopsy revealing strong accumulation of Gb<sub>3,</sub> as indicated by numerous vacuoles within the cardiomyocytes (arrow).</p
    corecore