8 research outputs found

    Germline and somatic imprinting in the nonhuman primate highlights species differences in oocyte methylation.

    Get PDF
    Genomic imprinting is an epigenetic mechanism resulting in parental allele-specific gene expression. Defects in normal imprinting are found in cancer, assisted reproductive technologies, and several human syndromes. In mouse models, germline-derived DNA methylation is shown to regulate imprinting. Though imprinting is largely conserved between mammals, species- and tissue-specific domains of imprinted expression exist. Using the cynomolgus macaque (Macaca fascicularis) to assess primate-specific imprinting, we present a comprehensive view of tissue-specific imprinted expression and DNA methylation at established imprinted gene clusters. For example, like mouse and unlike human, macaque IGF2R is consistently imprinted, and the PLAGL1, INPP5F transcript variant 2, and PEG3 imprinting control regions are not methylated in the macaque germline but acquire this post-fertilization. Methylome data from human early embryos appear to support this finding. These suggest fundamental differences in imprinting control mechanisms between primate species and rodents at some imprinted domains, with implications for our understanding of the epigenetic programming process in humans and its influence on disease.This study was conducted by all authors while at the Singapore Institute for Clinical Research and was fully supported by funding from the Agency for Science, Technology and Research, Singapore.This is the author accepted manuscript. The final version is available from Cold Spring Harbor Laboratory Press at http://genome.cshlp.org/content/early/2015/04/10/gr.183301.114.abstract

    Transcriptome changes affecting Hedgehog and cytokine signalling in the umbilical cord: implications for disease risk

    Get PDF
    BACKGROUND: Babies born at lower gestational ages or smaller birthweights have a greater risk of poorer health in later life. Both the causes of these sub-optimal birth outcomes and the mechanism by which the effects are transmitted over decades are the subject of extensive study. We investigated whether a transcriptomic signature of either birthweight or gestational age could be detected in umbilical cord RNA.METHODS: The gene expression patterns of 32 umbilical cords from Singaporean babies of Chinese ethnicity across a range of birthweights (1698-4151 g) and gestational ages (35-41 weeks) were determined. We confirmed the differential expression pattern by gestational age for 12 genes in a series of 127 umbilical cords of Chinese, Malay and Indian ethnicity.RESULTS: We found that the transcriptome is substantially influenced by gestational age; but less so by birthweight. We show that some of the expression changes dependent on gestational age are enriched in signal transduction pathways, such as Hedgehog and in genes with roles in cytokine signalling and angiogenesis. We show that some of the gene expression changes we report are reflected in the epigenome.CONCLUSIONS: We studied the umbilical cord which is peripheral to disease susceptible tissues. The results suggest that soma-wide transcriptome changes, preserved at the epigenetic level, may be a mechanism whereby birth outcomes are linked to the risk of adult metabolic and arthritic disease and suggest that greater attention be given to the association between premature birth and later disease risk

    Expression signature for gestational age organises samples into gestational age groups.

    No full text
    <p>Hierarchical clustering of samples (columns) by the expression levels of the 64 probes (rows) significantly associated with gestational age (adjusted p-value&lt;0.05), organises normal birth weight samples perfectly by gestational age group (A) and organises all samples into two clusters with significantly different gestational ages (B). Z-score normalised logged expression levels are denoted in the heat map (green for low, red for high, white for intermediate). X-axis colour bars denote sample classification: high birth weight group (&gt;3700 g) in orange; low birthweight group (&lt;2500 g) in green; normal birthweight and gestational age less than or equal to 37 weeks in blue; or normal birthweight and gestational age more than 37 weeks in red. Gestational age is also represented as a continuous variable in the x-axis colour bar in (B) green for low, red for high, white for intermediate.</p

    RNA Expression Microarray Study Design.

    No full text
    <p>Gestational age in weeks (y-axis) and birth-weight in grams (x-axis) of the samples analysed by expression microarrays are symmetrical to allow somewhat independent comparisons for birth-weight and gestational age. Samples are classified into high birth weight group (&gt;3700 g) in orange; low birthweight group (&lt;2500 g) in green; normal birthweight and gestational age less than or equal to 37 weeks in blue; or normal birthweight and gestational age more than 37 weeks in red. Two samples that failed QC are shown as non-filled circles.</p

    Twelve transcripts have differential expression levels in gestational age groups across the 120 sample replication set.

    No full text
    <p>Fold change with regard to the median sample of the more than 37 weeks gestation group, is shown on the y-axis. Gene names are shown above each panel. P-values from the 2 group tests are shown within each panel. Data is represented as a box plot where the 2–3 quartile range is within the box, the median is denoted by a horizontal line within the box, the min and max are denoted by horizontal lines outside of the box and single outliers are represented by crosses.</p
    corecore