148 research outputs found

    On-Farm Soybean Fertilizer Trials

    Get PDF
    All cropping systems require fertilizer inputs in order to maintain crop yields. Farmers continue to search for ways to increase soybean yields, such as applying micronutrients and using foliar applications of fertilizer. Although micronutrients are just as essential to plant growth as macronutrients, past research has indicated most Iowa soils can supply the micronutrient needs of soybeans

    On-Farm Soybean Fungicide Trials

    Get PDF
    Fungicide applications have become more popular among soybean farmers in recent years. The primary use of fungicides has been to control diseases such as Septoria brown spot, Cercospora leaf blight, and frogeye leaf spot. With lower grain prices, the chances of getting an economic benefit from fungicide applications have decreased

    ISU On-Farm Cooperator Trials: Relationships and Partnerships

    Get PDF
    Iowa State University (ISU) has a longstanding relationship with Iowa corn and soybean farmers. As a part of this relationship, ISU works to provide quality, unbiased information to assist the decision-making process on farm operations. In 2006, ISU began to expand this commitment with the assistance of northwest Iowa farmers by conducting more trials in their fields. The ISU on-farm cooperator trial program has grown to cover other areas across Iowa. The program links the resources of the ISU research farms, the technical expertise of the ISU field agronomists, the support of the local research farm associations, and volunteer farmercooperators to create a system of on-farm trials for Iowa

    MeerKLASS: MeerKAT Large Area Synoptic Survey

    Full text link
    We discuss the ground-breaking science that will be possible with a wide area survey, using the MeerKAT telescope, known as MeerKLASS (MeerKAT Large Area Synoptic Survey). The current specifications of MeerKAT make it a great fit for science applications that require large survey speeds but not necessarily high angular resolutions. In particular, for cosmology, a large survey over ∼4,000 deg2\sim 4,000 \, {\rm deg}^2 for ∼4,000\sim 4,000 hours will potentially provide the first ever measurements of the baryon acoustic oscillations using the 21cm intensity mapping technique, with enough accuracy to impose constraints on the nature of dark energy. The combination with multi-wavelength data will give unique additional information, such as exquisite constraints on primordial non-Gaussianity using the multi-tracer technique, as well as a better handle on foregrounds and systematics. Such a wide survey with MeerKAT is also a great match for HI galaxy studies, providing unrivalled statistics in the pre-SKA era for galaxies resolved in the HI emission line beyond local structures at z > 0.01. It will also produce a large continuum galaxy sample down to a depth of about 5\,μ\muJy in L-band, which is quite unique over such large areas and will allow studies of the large-scale structure of the Universe out to high redshifts, complementing the galaxy HI survey to form a transformational multi-wavelength approach to study galaxy dynamics and evolution. Finally, the same survey will supply unique information for a range of other science applications, including a large statistical investigation of galaxy clusters as well as produce a rotation measure map across a huge swathe of the sky. The MeerKLASS survey will be a crucial step on the road to using SKA1-MID for cosmological applications and other commensal surveys, as described in the top priority SKA key science projects (abridged).Comment: Larger version of the paper submitted to the Proceedings of Science, "MeerKAT Science: On the Pathway to the SKA", Stellenbosch, 25-27 May 201

    The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    Get PDF
    We present a catalog of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 GHz and/or 218 GHz in the 2008 Southern survey. Flux densities span 14-1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two sub-populations: 167 radio galaxies powered by central active galactic nuclei (AGN), and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97% of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogs. When combined with flux densities from the Australian Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index of 3.7+0.62-0.86, and includes both local galaxies and sources with redshifts as great as 5.6. Dusty sources with no counterpart in existing catalogs likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.Comment: 13 pages, 8 figures, 4 table
    • …
    corecore