27 research outputs found

    Impact of Marginal Exciton-Charge-Transfer State Offset on Charge Generation and Recombination in Polymer:Fullerene Solar Cells

    Get PDF
    The energetic offset between the initial photoexcited state and charge-transfer (CT) state in organic heterojunction solar cells influences both charge generation and open-circuit voltage (Voc). Here, we use time-resolved spectroscopy and voltage loss measurements to analyze the effect of the exciton–CT state offset on charge transfer, separation, and recombination processes in blends of a low-band-gap polymer (INDT-S) with fullerene derivatives of different electron affinity (PCBM and KL). For the lower exciton–CT state offset blend (INDT-S:PCBM), both photocurrent generation and nonradiative voltage losses are lower. The INDT-S:PCBM blend shows different excited-state dynamics depending on whether the donor or acceptor is photoexcited. Surprisingly, the charge recombination dynamics in INDT-S:PCBM are distinctly faster than those in INDT-S:KL upon excitation of the donor. We reconcile these observations using a kinetic model and by considering hybridization between the lowest excitonic and CT states. The modeling results show that this hybridization can significantly reduce Voc losses while still allowing reasonable charge generation efficiency

    Grafted block complex coacervate core micelles and their effect on protein adsorption on silica and polystyrene

    Get PDF
    We have studied the formation and the stability of grafted block complex coacervate core micelles (C3Ms) in solution and the influence of grafted block C3M coatings on the adsorption of the proteins β-lactoglobulin, bovine serum albumin, and lysozyme. The C3Ms consist of a grafted block copolymer PAA21-b-PAPEO14 (poly(acrylic acid)-b-poly(acrylate methoxy poly(ethylene oxide)), with a negatively charged PAA block and a neutral PAPEO block and a positively charged homopolymer P2MVPI (poly(N-methyl 2-vinyl pyridinium iodide). In solution, these C3Ms partly disintegrate at salt concentrations between 50 and 100 mM NaCl. Adsorption of C3Ms and proteins has been studied with fixed-angle optical reflectometry, at salt concentrations ranging from 1 to 100 mM NaCl. In comparison with the adsorption of PAA21-b-PAPEO14 alone adsorption of C3Ms significantly increases the amount of PAA21-b-PAPEO14 on the surface. This results in a higher surface density of PEO chains. The stability of the C3M coatings and their influence on protein adsorption are determined by the composition and the stability of the C3Ms in solution. A C3M-PAPEO14/P2MVPI43 coating strongly suppresses the adsorption of all proteins on silica and polystyrene. The reduction of protein adsorption is the highest at 100 mM NaCl (>90%). The adsorbed C3M-PAPEO14/P2MVPI43 layer is partly removed from the surface upon exposure to an excess of β-lactoglobulin solution, due to formation of soluble aggregates consisting of β-lactoglobulin and P2MVPI43. In contrast, C3M-PAPEO14/P2MVPI228 which has a fivefold longer cationic block enhances adsorption of the negatively charged proteins on both surfaces at salt concentrations above 1 mM NaCl. A single PAA21-b-PAPEO14 layer causes only a moderate reduction of protein adsorption

    The Relative Importance of Topography and RGD Ligand Density for Endothelial Cell Adhesion

    Get PDF
    The morphology and function of endothelial cells depends on the physical and chemical characteristics of the extracellular environment. Here, we designed silicon surfaces on which topographical features and surface densities of the integrin binding peptide arginine-glycine-aspartic acid (RGD) could be independently controlled. We used these surfaces to investigate the relative importance of the surface chemistry of ligand presentation versus surface topography in endothelial cell adhesion. We compared cell adhesion, spreading and migration on surfaces with nano- to micro-scaled pyramids and average densities of 6×102–6×1011 RGD/mm2. We found that fewer cells adhered onto rough than flat surfaces and that the optimal average RGD density for cell adhesion was 6×105 RGD/mm2 on flat surfaces and substrata with nano-scaled roughness. Only on surfaces with micro-scaled pyramids did the topography hinder cell migration and a lower average RGD density was optimal for adhesion. In contrast, cell spreading was greatest on surfaces with 6×108 RGD/mm2 irrespectively of presence of feature and their size. In summary, our data suggest that the size of pyramids predominately control the number of endothelial cells that adhere to the substratum but the average RGD density governs the degree of cell spreading and length of focal adhesion within adherent cells. The data points towards a two-step model of cell adhesion: the initial contact of cells with a substratum may be guided by the topography while the engagement of cell surface receptors is predominately controlled by the surface chemistry

    Polyethene with pendant fullerene moieties

    Get PDF
    Polyethene with fullerene moieties pendant on short-chain branches was prepared by the catalytic copolymerisation of ethene and a fullerene-containing vinylic comonomer, yielding polyethene copolymers containing up to 25 wt% of C-60

    Purification and electronic characterisation of 18 isomers of the OPV acceptor material bis-[60]PCBM

    Get PDF
    The as-produced isomer mixture of the organic photovoltaic device acceptor material bis-[60] PCBM has been purified into its constituents by peak-recycling HPLC, and those individual isomers were characterised by UV-Vis absorption spectroscopy and cyclic voltammetry. A total of 18 isomerswere purified from the mixture to a standard exceeding 99.5% with respect to other isomers. The HOMOs, LUMOs, and HOMO-LUMO gaps of the purified isomers vary from -5.673 to -5.444 eV, -3.901 to -3.729 eV, and 1.664 to 1.883 eV, respectively. We also find a correlation between HPLC retention time and the relative positions of the addends; in that generally the closer the addends are to each other the longer the retention time of the isomer, and vice versa

    Origin of fullerene-induced vitrification of fullerene: donor polymer photovoltaic blends and its impact on solar cell performance

    Get PDF
    Organic solar cell blends comprised of an electron donating polymer and electron accepting fullerene typically form upon solution casting a thin-film structure made up of a complex mixture of phases. These phases can vary greatly in: composition, order and thermodynamic stability; and they are dramatically influenced by the processing history. Understanding the processes that govern the formation of these phases and their subsequent effect on the efficiency of photo-generating and extracting charge carriers is of utmost importance to enable rational design and processing of these blends. Here we show that the vitrifying effect of three fullerene derivatives ([60]PCBM, bis[60]PCBM, and [60]ICBA) on the prototypical donor polymer (rr-P3HT) can dominate microstructure formation of fullerene/donor polymer blends cast from solution. Using a dynamic crystallization model based on an amalgamation of Flory–Huggins and Lauritzen–Hoffman theory coupled to solvent evaporation we demonstrate that this vitrification, which can result in a large fraction of highly intermixed amorphous solid solution of the fullerene and the polymer, is due to kinetic and thermodynamic reasons. The former is partly determined by the glass transition temperature of the individual components while donor polymer:fullerene miscibility, strongly influenced by the chemical nature of the donor and the fullerene and leading to thermodynamic mixing, dictates the second phenomena. We show that our approximate dynamic crystallization model assists understanding the different solid-state structure formation of rr-P3HT:fullerene blends. Due to the generality of the assumptions used, our model should be widely applicable and assist to capture the influence of the different vitrification mechanisms also of other photovoltaic blends, including the high-efficiency systems based on the strongly aggregating PCE11 (PffBT4T-2OD), which also feature clear signs of vitirfication upon blending with, e.g., [60]PCBM. Hence, our model will provide essential materials design criteria and enable identification of suitable processing guidelines for existing and new high-performing blends from the outset

    Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance

    No full text
    The performance of bulk-heterojunction solar cells based on a phase-separated mixture of donor and acceptor materials is known to be critically dependent on the morphology of the active layer. Here we use a combination of techniques to resolve the morphology of spin cast films of poly(p-phenylene vinylene)/methanofullerene blends in three dimensions on a nanometer scale and relate the results to the performance of the corresponding solar cells. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and depth profiling using dynamic time-of-flight secondary ion mass spectrometry (TOF-SIMS) clearly show that for the two materials used in this study, 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerene (PCBM) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV), phase separation is not observed up to 50 wt.-% PCBM. Nanoscale phase separation throughout the film sets in for concentrations of more than 67 wt.-% PCBM, to give domains of rather pure PCBM in a homogenous matrix of 50:50 wt.-% MDMO-PPV/PCBM. Electrical characterization, under illumination and in the dark, of the corresponding photovoltaic devices revealed a strong increase of power conversion efficiency when the phase-separated network develops, with a sharp increase of the photocurrent and fill factor between 50 and 67 wt.-% PCBM. As the phase separation sets in, enhanced electron transport and a reduction of bimolecular charge recombination provide the conditions for improved performance. The results are interpreted in terms of a model that proposes a hierarchical build up of two cooperative interpenetrating networks at different length scales.

    Impact of marginal exciton–charge-transfer state offset on charge generation and recombination in polymer:fullerene solar cells

    Get PDF
    The energetic offset between the initial photoexcited state and charge-transfer (CT) state in organic heterojunction solar cells influences both charge generation and open-circuit voltage (Voc). Here, we use time-resolved spectroscopy and voltage loss measurements to analyze the effect of the exciton–CT state offset on charge transfer, separation, and recombination processes in blends of a low-band-gap polymer (INDT-S) with fullerene derivatives of different electron affinity (PCBM and KL). For the lower exciton–CT state offset blend (INDT-S:PCBM), both photocurrent generation and nonradiative voltage losses are lower. The INDT-S:PCBM blend shows different excited-state dynamics depending on whether the donor or acceptor is photoexcited. Surprisingly, the charge recombination dynamics in INDT-S:PCBM are distinctly faster than those in INDT-S:KL upon excitation of the donor. We reconcile these observations using a kinetic model and by considering hybridization between the lowest excitonic and CT states. The modeling results show that this hybridization can significantly reduce Voc losses while still allowing reasonable charge generation efficiency

    Insulin-Loaded Nanoparticles Based on N-Trimethyl Chitosan: In Vitro (Caco-2 Model) and Ex Vivo (Excised Rat Jejunum, Duodenum, and Ileum) Evaluation of Penetration Enhancement Properties

    No full text
    The aim of this paper was to evaluate the penetration enhancement properties of nanoparticles (NP) based on N-trimethyl chitosan (TMC 35% quaternization degree) loaded with insulin. The permeation performances of TMC NP were compared with those of chitosan (CS) NP and also with TMC and CS solutions. To estimate the mechanism of penetration enhancement, two different approaches have been taken into account: an in vitro study (Caco-2 cells) and an ex vivo study (excised rat duodenum, jejunum, and ileum). Insulin-loaded CS and TMC NP had dimensions of about 250 nm and had high yield and high encapsulation efficiency. The in vitro study evidenced that TMC and CS were able to enhance insulin permeation to the same extent. Penetration enhancement properties of TMC NP seem to be prevalently related to endocytosis while the widening of tight junctions appeared more important as mechanism in the case of CS NP. The ex vivo study put in evidence the role of mucus layer and of its microclimate pH. In duodenum (pH 5–5.5), CS and TMC solutions were more effective than NP while TMC NP were more efficient towards jejunum tissue (pH 6–6.5) for their high mucoadhesive potential. Confocal laser scanning microscopy study supported the hypothesis that penetration enhancement due to TMC NP was mainly due to internalization/endocytosis into duodenum and jejunum epithelial cells. The good penetration enhancement properties (permeation and penetration/internalization) make TMC NP suitable carriers for oral administration of insulin
    corecore