19 research outputs found
International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes.
peer reviewedThis International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes
Summary: International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes.
peer reviewedThis International evidence-based nomenclature and classification consensus on the congenital bicuspid aortic valve and its aortopathy recognizes 3 types of bicuspid aortic valve: 1. Fused type, with 3 phenotypes: right-left cusp fusion, right-non cusp fusion and left-non cusp fusion; 2. 2-sinus type with 2 phenotypes: Latero-lateral and antero-posterior; and 3. Partial-fusion or forme fruste. This consensus recognizes 3 bicuspid-aortopathy types: 1. Ascending phenotype; root phenotype; and 3. extended phenotypes
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
Cardiovascular magnetic resonance characterization of rheumatic mitral stenosis: findings from three worldwide endemic zones
Abstract Background Cardiac remodeling in rheumatic mitral stenosis (MS) is complex and incompletely understood. The objective of this study was to evaluate cardiac structural and functional changes in a cohort of patients with rheumatic MS using cardiovascular magnetic resonance (CMR). Methods This retrospective study included 40 patients with rheumatic MS, consisting of 19 patients from India, 15 patients from China, and 6 patients from Mexico (median (interquartile range (IQR)) age: 45 years (34–55); 75% women). Twenty patients were included in the control group. CMR variables pertaining to morphology and function were collected. Late gadolinium enhancement (LGE) sequences were acquired for tissue characterization. Statistical analyses were performed using the Kruskal–Wallis test and the chi-square test. Results Compared to the control group, patients with MS had lower left ventricular (LV) ejection fraction (51% (42%–55%) vs 60% (57%–65%), p < 0.001), lower right ventricular (RV) ejection fraction (44% (40%–52%) vs 64% (59%–67%), p < 0.001), higher RV end-diastolic volume (72 (58–87) mL/m2 vs 59 (49–69) mL/m2, p = 0.003), larger left atrial volume (87 (67–108) mL/m2 vs 29 (22–34) mL/m2, p < 0.001), and right atrial areas (20 (16–23) cm2 vs 13 (12–16) cm2, p < 0.001). LGE was prevalent in patients with rheumatic MS (82%), and was commonly located at the RV insertion sites. Furthermore, the patient cohorts from India, China, and Mexico were heterogeneous in terms of baseline characteristics and cardiac remodeling. Conclusion Our findings demonstrated that biventricular dysfunction, right and left atrial remodeling, and LGE at the RV insertion sites are underappreciated in contemporary rheumatic MS. Further studies are needed to elucidate the prognostic implications of these findings
Worldwide variation in cardiovascular magnetic resonance practice models
Abstract Introduction The use of cardiovascular magnetic resonance (CMR) for diagnosis and management of a broad range of cardiac and vascular conditions has quickly expanded worldwide. It is essential to understand how CMR is utilized in different regions around the world and the potential practice differences between high-volume and low-volume centers. Methods CMR practitioners and developers from around the world were electronically surveyed by the Society for Cardiovascular Magnetic Resonance (SCMR) twice, requesting data from 2017. Both surveys were carefully merged, and the data were curated professionally by a data expert using cross-references in key questions and the specific media access control IP address. According to the United Nations classification, responses were analyzed by region and country and interpreted in the context of practice volumes and demography. Results From 70 countries and regions, 1092 individual responses were included. CMR was performed more often in academic (695/1014, 69%) and hospital settings (522/606, 86%), with adult cardiologists being the primary referring providers (680/818, 83%). Evaluation of cardiomyopathy was the top indication in high-volume and low-volume centers (p = 0.06). High-volume centers were significantly more likely to list evaluation of ischemic heart disease (e.g., stress CMR) as a primary indicator compared to low-volume centers (p < 0.001), while viability assessment was more commonly listed as a primary referral reason in low-volume centers (p = 0.001). Both developed and developing countries noted cost and competing technologies as top barriers to CMR growth. Access to scanners was listed as the most common barrier in developed countries (30% of responders), while lack of training (22% of responders) was the most common barrier in developing countries. Conclusion This is the most extensive global assessment of CMR practice to date and provides insights from different regions worldwide. We identified CMR as heavily hospital-based, with referral volumes driven primarily by adult cardiology. Indications for CMR utilization varied by center volume. Efforts to improve the adoption and utilization of CMR should include growth beyond the traditional academic, hospital-based location and an emphasis on cardiomyopathy and viability assessment in community centers
Cardiovascular magnetic resonance in women with cardiovascular disease: position statement from the Society for Cardiovascular Magnetic Resonance (SCMR)
Abstract
This document is a position statement from the Society for Cardiovascular Magnetic Resonance (SCMR) on recommendations for clinical utilization of cardiovascular magnetic resonance (CMR) in women with cardiovascular disease. The document was prepared by the SCMR Consensus Group on CMR Imaging for Female Patients with Cardiovascular Disease and endorsed by the SCMR Publications Committee and SCMR Executive Committee. The goals of this document are to (1) guide the informed selection of cardiovascular imaging methods, (2) inform clinical decision-making, (3) educate stakeholders on the advantages of CMR in specific clinical scenarios, and (4) empower patients with clinical evidence to participate in their clinical care. The statements of clinical utility presented in the current document pertain to the following clinical scenarios: acute coronary syndrome, stable ischemic heart disease, peripartum cardiomyopathy, cancer therapy-related cardiac dysfunction, aortic syndrome and congenital heart disease in pregnancy, bicuspid aortic valve and aortopathies, systemic rheumatic diseases and collagen vascular disorders, and cardiomyopathy-causing mutations. The authors cite published evidence when available and provide expert consensus otherwise. Most of the evidence available pertains to translational studies involving subjects of both sexes. However, the authors have prioritized review of data obtained from female patients, and direct comparison of CMR between women and men. This position statement does not consider CMR accessibility or availability of local expertise, but instead highlights the optimal utilization of CMR in women with known or suspected cardiovascular disease. Finally, the ultimate goal of this position statement is to improve the health of female patients with cardiovascular disease by providing specific recommendations on the use of CMR