8 research outputs found
Screening of endophytic fungi for biofuel feedstock production using palm oil mill effluent as a carbon source
Edwin Sia Sien Aun1, Joanne Yeo Suan Hui1, Julie Wong Wei Ming1, Jenny Choo Cheng Yi1, Changi Wong1,
Aazani Mujahid2, Moritz Müller1
Dissolved inorganic nitrogen in a tropical estuary in Malaysia : transport and transformation
Dissolved inorganic nitrogen (DIN), including nitrate, nitrite and ammonium, frequently acts as the limitation
for primary productivity. Our study focused on the transport and transformation of DIN in a tropical estuary, i.e., the Rajang River estuary, in Borneo, Malaysia. Three cruises were conducted in August 2016 and February–March and September 2017, covering both dry and wet seasons. Before entering the coastal delta, decomposition of the terrestrial organic matter and the subsequent soil leaching was assumed to be the main source of DIN in the river water. In the estuary, decomposition of dissolved organic nitrogen was an
additional DIN source, which markedly increased DIN concentrations in August 2016 (dry season). In the wet season (February 2017), ammonium concentrations showed a relatively conservative distribution during the mixing, and the nitrate addition was weak. La Niña events induced high precipitations and discharge rates, decreased reaction intensities of ammonification and nitrification. Hence similar distribution patterns of DIN species in the estuary were found in September 2017 (end of the dry season). The magnitude of riverine DIN flux varied between 77.2 and 101.5 t N d−1 , which might be an important support for the coastal primary productivity
Distribution and flux of dissolved iron in the peatland-draining rivers and estuaries of Sarawak, Malaysian Borneo
Dissolved iron (dFe) is essential for multiple biogeochemical reactions in oceans, such as photosynthesis, respiration and nitrogen fixation. Currently, large uncertainties remain regarding the input of riverine dFe into coastal oceans, especially in tropical rivers in southeastern Asia. In the present study, the concentrations of dFe and distribution patterns of dFe were determined along the salinity gradient in the Rajang River and three blackwater rivers that drain from peatlands, including the Maludam River, the Sebuyau River and the Simunjan River. In the Rajang River, the dFe concentration in freshwater samples (salinity < 1 PSU – practical salinity units) in the wet season (March 2017) was higher than that in the dry season (August 2016), which might be related to the resuspension of sediment particles and soil erosion from cropland. In the Rajang estuary, an intense removal of dFe in low-salinity waters (salinity < 15 PSU) was observed, which was likely due to salt-induced flocculation and absorption of dFe onto suspended particulate matter (SPM). However, increases in the dFe concentration in the wet season were also found, which may be related to dFe desorption from SPM and the influences of agricultural activities. In the blackwater rivers, the dFe concentration reached 44.2 µmol L−1
, indicating a strong contribution to the dFe budget from peatland leaching. The dFe flux derived from the Rajang estuary to the South China Sea was estimated to
be 6.4±2.3×105 kg yr−1 . For blackwater rivers, the dFe flux was approximately 1.1 ± 0.5 × 105 kg yr−1 in the Maludam River. Anthropogenic activities may play an important role in the dFe yield, such as in the Serendeng tributary of the Rajang River and Simunjan River, where intensive oil palm plantations were observed
Distribution and behaviour of dissolved selenium in tropical peatland-draining rivers and estuaries of Malaysia
Selenium (Se) is an essential micronutrient for
aquatic organisms. Despite its importance, our current
knowledge of the biogeochemical cycling of dissolved Se in tropical estuaries is limited, especially in Southeast Asia. To gain insights into Se cycling in tropical peat-draining rivers and estuaries, samples were collected from the Rajang, Maludam, Sebuyau, Simunjan, Sematan, Samunsam and Lunda rivers and estuaries in western Sarawak, Malaysia, in March and September 2017 and analysed for various forms of Se (dissolved inorganic and organic). Mean total dissolved Se (TDSe), dissolved inorganic Se (DISe) and dissolved organic Se concentrations (DOSe) were 2.2 nmol L−1 (range: 0.7 to
5.7 nmol L−1 ), 0.18 nmol L−1 (range: less than the detection limit to 0.47 nmol L−1 ) and 2.0 nmol L−1
(range: 0.42 to 5.7 nmol L−1 ), respectively. In acidic, low-oxygen, organicrich blackwater (peatland-draining) rivers, the concentrations of DISe were extremely low (near or below the detection limit, i.e. 0.0063 nmol L−1
), whereas those of DOSe were high. In rivers and estuaries that drained peatland, DOSe / TDSe ratios ranged from 0.67 to 0.99, showing that DOSe dominated. The positive relationship between DISe and salinity and the negative relationship between DOSe and salinity indicate marine and terrestrial origins of DISe and
DOSe, respectively. The positive correlations of DOSe with the humification index and humic-like chromophoric dissolved organic matter components in freshwater river reaches suggest that peat soils are probably the main source of DOSe The DOSe fractions may be associated with high molecular weight peatland-derived aromatic and black carbon compounds and may photodegrade to more bioavailable forms once transported to coastal waters. The TDSe flux delivered by the peat-draining rivers exceeded those reported for other small rivers and is quantitatively more significant than previously thought
In search of "alien life" in a poly-extreme environment
This photograph originally appeared in the 2017 Research student photography and image competition held to celebrate National Science Week (18 August - 8 September 2017).
Blurb: This is a picture of me taking samples in an acid mine drainage passing through peat soils in the High Arctic (Svalbard) during the famed midnight sun season in summer. While it is deceptively called summer, the actual temperature hovers between 4-8°C in the high Arctic. The rocks have a reddish hue due to iron oxidation which is caused by the low pH value from the acid mine drainage with the backdrop of the snow-capped mountains giving it an almost alien-like environment. The samples collected will be later compared with peat swamp forests (low pH by nature) in tropical Borneo.
Biogeographical distribution of microbial communities along the Rajang River-South China Sea continuum
The Rajang River is the main drainage system for central Sarawak in Malaysian Borneo and passes through peat domes through which peat-rich material is being fed into the system and eventually into the southern South China Sea. Microbial communities found within peat-rich systems are important biogeochemical cyclers in terms of methane and carbon dioxide sequestration. To address the critical lack of knowledge about microbial communities in tropical (peat-draining) rivers, this study represents the first seasonal assessment targeted at establishing a foundational understanding of the microbial communities of the Rajang River–South China Sea continuum. This was carried out utilising 16S rRNA gene amplicon sequencing via Illumina MiSeq in size-fractionated samples (0.2 and 3.0 µm GF/C filter membranes) covering different biogeographical features and sources from headwaters to coastal waters. The microbial communities found along the Rajang River exhibited taxa common to rivers (i.e. predominance of β-Proteobacteria) while estuarine and marine regions exhibited taxa that were common to the aforementioned regions as well (i.e. predominance of α− and γ-Proteobacteria). This is in agreement with studies from other rivers which observed similar changes along salinity gradients. In terms of particulate versus free-living bacteria, nonmetric multi-dimensional scaling (NMDS) results showed similarly distributed microbial communities with varying separation between seasons. Distinct patterns were observed based on linear models as a result of the changes in salinity along with variation of other biogeochemical parameters. Alpha diversity indices indicated that microbial communities were higher in diversity upstream compared to the marine and estuarine regions, whereas anthropogenic perturbations led to increased richness but less diversity. Despite the observed changes in bacterial community composition and diversity that occur along the continuum of the Rajang River to the sea, the PICRUSt predictions showed minor variations. The results provide essential context for future studies such as further analyses on the ecosystem response to anthropogenic land-use practices and probable development of biomarkers to improve the monitoring of water quality in this region
Dissolved inorganic nitrogen in a tropical estuary in Malaysia: transport and transformation
Dissolved inorganic nitrogen (DIN), including nitrate, nitrite and ammonium, frequently acts as the limitation for primary productivity. Our study focused on the transport and transformation of DIN in a tropical estuary, i.e., the Rajang River estuary, in Borneo, Malaysia. Three cruises were conducted in August 2016 and February–March and September 2017, covering both dry and wet seasons. Before entering the coastal delta, decomposition of the terrestrial organic matter and the subsequent soil leaching was assumed to be the main source of DIN in the river water. In the estuary, decomposition of dissolved organic nitrogen was an additional DIN source, which markedly increased DIN concentrations in August 2016 (dry season). In the wet season (February 2017), ammonium concentrations showed a relatively conservative distribution during the mixing, and the nitrate addition was weak. La Niña events induced high precipitations and discharge rates, decreased reaction intensities of ammonification and nitrification. Hence similar distribution patterns of DIN species in the estuary were found in September 2017 (end of the dry season). The magnitude of riverine DIN flux varied between 77.2 and 101.5 t N d−1, which might be an important support for the coastal primary productivity