14 research outputs found

    Echolocating bats emit a highly directional sonar sound beam in the field

    Get PDF
    Bats use echolocation or biosonar to navigate and find prey at night. They emit short ultrasonic calls and listen for reflected echoes. The beam width of the calls is central to the function of the sonar, but directionality of echolocation calls has never been measured from bats flying in the wild. We used a microphone array to record sounds and determine horizontal directionality for echolocation calls of the trawling Daubenton's bat, Myotis daubentonii, flying over a pond in its natural habitat. Myotis daubentonii emitted highly directional calls in the field. Directionality increased with frequency. At 40 kHz half-amplitude angle was 25°, decreasing to 14° at 75 kHz. In the laboratory, M. daubentonii emitted less intense and less directional calls. At 55 kHz half-amplitude angle was 40° in the laboratory versus 20° in the field. The relationship between frequency and directionality can be explained by the simple piston model. The model also suggests that the increase in the emitted intensity in the field is caused by the increased directionality, focusing sound energy in the forward direction. The bat may increase directionality by opening the mouth wider to emit a louder, narrower beam in the wild

    Sensory constraints on prey detection performance in an ensemble of vespertilionid understorey rain forest bats

    No full text
    1. Bats evolved different strategies to find prey close to vegetation. Previous studies on European bats of the genus Myotis (Vespertilionidae) revealed an association between echolocation call bandwidth and the ability to find and capture prey close to vegetation. Here, we investigated whether the role of call bandwidth in prey detection is a more general principle in bat sensory ecology. We focused on eight palaeotropical species of the vespertilionid subfamilies Kerivoulinae and Murininae, as they also achieve very broad bandwidths with the first harmonic of their echolocation calls. 2. All species emitted calls of bandwidths broader than 90kHz with extremely high start frequencies (max. 230kHz), and all of five experimentally tested species were able to catch prey closer than 6cm, occasionally even closer than 2.5cm, to a standardized vegetation-like background. The performance and call data corroborate the hypothesis that bats with very broadband calls and high-frequency components have access to prey very close to vegetation and establish this as a more general principle in bat sensory ecology. 3. In a second experiment, we questioned whether echolocation is the only sensory cue used by the bats to find prey. Echo-acoustic prey dummies that did not smell or taste like arthropods and did not produce any sounds or movement were presented to all five species. In 80 of 83 cases, the bats caught or attempted to catch the dummy, indicating that the bats used only echo-acoustic information for prey detection and recognition in our experiments. 4. We then tested whether the sensory difficulty in finding prey close to clutter constrains the bats' attacks on prey or whether flight manoeuvrability may be limiting by manipulating the echo reflection properties of the background. The bats were able to find prey very slightly, but significantly closer to a background with lower echo reflection (an easier sensory task), which corroborates the limiting role of sensory performance. 5. While silent, motionless prey close to and in vegetation will be accessible to these specialists, it will go undetected by other bats. This scenario supports the idea that sensory specialization mediates resource access and niche separation (sensory niche partitioning)

    Breaking the trade-off: rainforest bats maximize bandwidth and repetition rate of echolocation calls as they approach prey

    No full text
    Both mammals and birds experience a performance trade-off between producing vocalizations with high bandwidths and at high repetition rate. Echolocating bats drastically increase repetition rate from 2-20 calls s(-1) up to about 170 calls s(-1) prior to intercepting airborne prey in order to accurately track prey movement. In turn, bandwidth drops to about 10-30 kHz for the calls of this 'final buzz'. We have now discovered that Southeast Asian rainforest bats (in the vespertilionid subfamilies Kerivoulinae and Murininae) are able to maintain high call bandwidths at very high repetition rates throughout approach to prey. Five species of Kerivoula and Phoniscus produced call bandwidths of between 78 and 170 kHz at repetition rates of 140-200 calls s(-1) and two of Murina at 80 calls s(-1). The 'typical' and distinct drop in call frequency was present in none of the seven species. This stands in striking contrast to our present view of echolocation during approach to prey in insectivorous bats, which was established largely based on European and American members of the same bat family, the Vespertilionidae. Buzz calls of Kerivoula pellucida had mean bandwidths of 170 kHz and attained maximum starting frequencies of 250 kHz which makes them the most broadband and most highly pitched tonal animal vocalization known to date. We suggest that the extreme vocal performance of the Kerivoulinae and Murininae evolved as an adaptation to echolocating and tracking arthropods in the dense rainforest understorey
    corecore