196 research outputs found

    High Magnetic Field ESR in the Haldane Spin Chains NENP and NINO

    Full text link
    We present electron spin resonance experiments in the one-dimensional antiferromagnetic S=1 spin chains NENP and NINO in pulsed magnetic fields up to 50T. The measured field dependence of the quantum energy gap for B||b is analyzed using the exact diagonalization method and the density matrix renormalization group method (DMRG). A staggered anisotropy term (-1)^i d(S_i^x S_i^z + S_i^z S_i^x) was considered for the first time in addition to a staggered field term (-1)^i S_i^x B_st. We show that the spin dynamics in high magnetic fields strongly depends on the orthorhombic anisotropy E.Comment: 4 pages, RevTeX, 4 figure

    OBDD-Based Representation of Interval Graphs

    Full text link
    A graph G=(V,E)G = (V,E) can be described by the characteristic function of the edge set χE\chi_E which maps a pair of binary encoded nodes to 1 iff the nodes are adjacent. Using \emph{Ordered Binary Decision Diagrams} (OBDDs) to store χE\chi_E can lead to a (hopefully) compact representation. Given the OBDD as an input, symbolic/implicit OBDD-based graph algorithms can solve optimization problems by mainly using functional operations, e.g. quantification or binary synthesis. While the OBDD representation size can not be small in general, it can be provable small for special graph classes and then also lead to fast algorithms. In this paper, we show that the OBDD size of unit interval graphs is O( V /log V )O(\ | V \ | /\log \ | V \ |) and the OBDD size of interval graphs is $O(\ | V \ | \log \ | V \ |)whichbothimproveaknownresultfromNunkesserandWoelfel(2009).Furthermore,wecanshowthatusingourvariableorderandnodelabelingforintervalgraphstheworstcaseOBDDsizeis which both improve a known result from Nunkesser and Woelfel (2009). Furthermore, we can show that using our variable order and node labeling for interval graphs the worst-case OBDD size is \Omega(\ | V \ | \log \ | V \ |).Weusethestructureoftheadjacencymatricestoprovethesebounds.Thismethodmaybeofindependentinterestandcanbeappliedtoothergraphclasses.Wealsodevelopamaximummatchingalgorithmonunitintervalgraphsusing. We use the structure of the adjacency matrices to prove these bounds. This method may be of independent interest and can be applied to other graph classes. We also develop a maximum matching algorithm on unit interval graphs using O(\log \ | V \ |)operationsandacoloringalgorithmforunitandgeneralintervalsgraphsusing operations and a coloring algorithm for unit and general intervals graphs using O(\log^2 \ | V \ |)$ operations and evaluate the algorithms empirically.Comment: 29 pages, accepted for 39th International Workshop on Graph-Theoretic Concepts 201

    Symmetry and dimension of the magnon dispersion of inorganic spin-Peierls systems

    Full text link
    The data on the dispersion of the magnetic excitations of CuGeO_3 in the spin-Peierls dimerized phase are analyzed. On the basis of the lattice structure it is shown that even along the chains the d=2d=2 character cannot be neglected. The symmetry of the dispersion differs from the one assumed so far. The magnetic resonance data is reinterpreted. The possibility of interchain rather than intrachain frustration is discussed.Comment: 4 pages, Revtex, to appear in PR

    The legacy effect of synthetic N fertiliser

    Get PDF
    Cumulative crop recovery of synthetic fertiliser nitrogen (N) over several cropping seasons (legacy effect) generally receives limited attention. The increment in crop N uptake after the first-season uptake from fertiliser can be expressed as a fraction (∆RE) of annual N application rate. This study aims to quantify ∆RE using data from nine long-term experiments (LTEs). As such, ∆RE is the difference between first season (RE1st) and long-term (RELT) recovery of synthetic fertiliser N. In this study, RE1st was assessed either by the 15N isotope method, or by a zero-N subplot freshly superimposed on a long-term fertilised LTE treatment plot. RELT was calculated by comparing N uptake in the total aboveground crop biomass between a long-term fertilised and long-term control (zero-N) treatment. Using a mixed linear effect model, the effects of climate, crop type, experiment duration, average N rate, and soil clay content on ∆RE were evaluated. Because the experimental setup required for calculation of ∆RE is relatively rare, only nine suitable LTEs were found. Across these nine LTEs in Europe and North America, mean ∆RE was 24.4% (±12.0%, 95% CI) of annual N application, with higher values for winter wheat than for maize. This result shows that fertiliser-N retained in the soil and stubble may contribute substantially to crop N uptake in subsequent years. Our results suggest that an initial recovery of 43.8% (±11%, 95% CI) of N application may increase to around 66.0% (±15%, 95% CI) on average over time. Furthermore, we found that ∆RE was not clearly related to long-term changes in topsoil total N stock. Our findings show that the - often used - first year recovery of synthetic fertiliser N application does not express the full effect of fertiliser application on crop nutrition. The fertiliser contribution to soil N supply should be accounted for when exploring future scenarios on N cycling, including crop N requirements and N balance schemes

    SHARPIN Is Essential for Cytokine Production, NF-κB Signaling, and Induction of Th1 Differentiation by Dendritic Cells

    Get PDF
    Spontaneous mutations of the Sharpin (SHANK-associated RH domain-interacting protein, other aliases: Rbckl1, Sipl1) gene in mice result in systemic inflammation that is characterized by chronic proliferative dermatitis and dysregulated secretion of T helper1 (Th1) and Th2 cytokines. The cellular and molecular mechanisms underlying this inflammatory phenotype remain elusive. Dendritic cells may contribute to the initiation and progression of the phenotype of SHARPIN-deficient mice because of their pivotal role in innate and adaptive immunity. Here we show by flow cytometry that SHARPIN- deficiency did not alter the distribution of different DC subtypes in the spleen. In response to TOLL-like receptor (TLR) agonists LPS and poly I:C, cultured bone marrow-derived dendritic cells (BMDC) from WT and mutant mice exhibited similar increases in expression of co-stimulatory molecules CD40, CD80, and CD86. However, stimulated SHARPIN-deficient BMDC had reduced transcription and secretion of pro-inflammatory mediators IL6, IL12P70, GMCSF, and nitric oxide. Mutant BMDC had defective activation of NF-κB signaling, whereas the MAPK1/3 (ERK1/2) and MAPK11/12/13/14 (p38 MAP kinase isoforms) and TBK1 signaling pathways were intact. A mixed lymphocyte reaction showed that mutant BMDC only induced a weak Th1 immune response but stimulated increased Th2 cytokine production from allogeneic naïve CD4+ T cells. In conclusion, loss of Sharpin in mice significantly affects the immune function of DC and this may partially account for the systemic inflammation and Th2-biased immune response

    Role of urothelial cells in BCG immunotherapy for superficial bladder cancer

    Get PDF
    Intravesical instillation of Bacillus Calmette-Guérin (BCG) is used for the treatment of superficial bladder cancer, both to reduce the recurrence rate of bladder tumour and to diminish the risk of progression. Since its first therapeutic application in 1976, major research efforts have been directed to decipher the exact mechanism of action of the BCG-associated antitumour effect. Bacillus Calmette-Guérin causes an extensive local inflammatory reaction in the bladder wall. Of this, the massive appearance of cytokines in the urine of BCG-treated patients stands out. Activated lymphocytes and macrophages are the most likely sources of these cytokines, but at present other cellular sources such as urothelial tumour cells cannot be ruled out. Bacillus Calmette-Guérin is internalised and processed both by professional antigen-presenting cells and urothelial tumour cells, resulting in an altered gene expression of these cells that accumulates in the presentation of BCG antigens and secretion of particular cytokine

    CD1a-positive infiltrating-dendritic cell density and 5-year survival from human breast cancer

    Get PDF
    © Churchill LivingstoneInfiltrating CD1a+ dendritic cells (DCs) have been associated with increased survival in a number of human cancers. This study investigated DC infiltration within breast cancers and the association with survival. Classical established prognostic factors, of tumour size, lymph node status, histological grade, lympho-vascular invasion, the KI-67 (MIB-1) fraction and the Nottingham Prognostic Index (NPI) were also compared. A total of 48 breast cancer patients were followed from the time of surgery and CD1a density analysis for 5 years or until death. Our data set validated previous studies, which show a relationship between survival and the NPI (P<0.001), tumour size (P<0.01) and lymph node status (P<0.05). Although more patients were alive at the 5-year time point in the group with higher CD1a DC density than the lower CD1a DC group, this failed to reach statistical significance at the P=0.05 level. Analysis at 10 years postsurgery is required to investigate the association further.B.J.Coventry and J. Morto
    corecore