29 research outputs found

    Synthetic Morphology Using Alternative Inputs

    Get PDF
    Designing the shape and size of a cell is an interesting challenge for synthetic biology. Prolonged exposure to the mating pheromone α-factor induces an unusual morphology in yeast cells: multiple mating projections. The goal of this work was to reproduce the multiple projections phenotype in the absence of α-factor using a gain-of-function approach termed “Alternative Inputs (AIs)”. An alternative input is defined as any genetic manipulation that can activate the signaling pathway instead of the natural input. Interestingly, none of the alternative inputs were sufficient to produce multiple projections although some produced a single projection. Then, we extended our search by creating all combinations of alternative inputs and deletions that were summarized in an AIs-Deletions matrix. We found a genetic manipulation (AI-Ste5p ste2Δ) that enhanced the formation of multiple projections. Following up this lead, we demonstrated that AI-Ste4p and AI-Ste5p were sufficient to produce multiple projections when combined. Further, we showed that overexpression of a membrane-targeted form of Ste5p alone could also induce multiple projections. Thus, we successfully re-engineered the multiple projections mating morphology using alternative inputs without α-factor

    Fungal G-protein-coupled receptors::mediators of pathogenesis and targets for disease control

    Get PDF
    G-protein signalling pathways are involved in sensing the environment, enabling fungi to coordinate cell function, metabolism and development with their surroundings, thereby promoting their survival, propagation and virulence. G-protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in fungi. Despite the apparent importance of GPCR signalling to fungal biology and virulence, relatively few GPCR–G-protein interactions, and even fewer receptor-binding ligands, have been identified. Approximately 40% of current pharmaceuticals target human GPCRs, due to their cell surface location and central role in cell signalling. Fungal GPCRs do not belong to any of the mammalian receptor classes, making them druggable targets for antifungal development. This Review Article evaluates developments in our understanding of fungal GPCR-mediated signalling, while substantiating the rationale for considering these receptors as potential antifungal targets. The need for insights into the structure–function relationship of receptor–ligand interactions is highlighted, which could facilitate the development of receptor-interfering compounds that could be used in disease control

    EXAFS investigation of UF4

    No full text
    corecore