110 research outputs found

    Wood ash treatment affects seasonal N fluctuations in needles of adult Picea abies trees: a 15N-tracer study

    Get PDF
    A 15N-tracer experiment was carried out in a stand of adult spruce trees [Picea abies (L.) Karst.] located on the Swiss Plateau in order to investigate the effects of wood ash treatment on seasonal nitrogen fluctuations in fine roots and needles. Treatments included irrigation (W), liquid fertilization (LF) and wood ash (A) application. 15N fluctuation in fine roots and current to 3-year-old needles was studied after one 15N pulse for 2consecutive years (1999, 2000). 15N tracer was rapidly incorporated into the fine roots of adult trees, and δ15N values reached similar levels in all treatments 2months after the pulse. In the needles, the largest increase in δ15N was observed in those of the current year. Following the initial peak during spring growth, δ15N values in needles of control trees showed an oscillating pattern through the season. This oscillation is attributed to the increased use of internal N sources, as soon as the roots can no longer meet the increased N demand during the sprouting phase. However, W-, LF- and A-treated trees no longer showed the oscillation in δ15N. Additional water (W and LF) as well as fertilizer (A and LF) may have induced shifts in the microbial flora, thus increasing the unlabelled N release from the soil. The strongest dampening was observed for the A treatment, indicating sufficient N availability from the soil, and making intensive use of the internal N sources unnecessary. Treatment with wood ash thus resulted in a similar fertilizer response to liquid fertilizatio

    Inferring Foliar Water Uptake Using Stable Isotopes of Water

    Get PDF
    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes

    Climatic Influences on Summer Use of Winter Precipitation by Trees

    Get PDF
    Trees in seasonal climates may use water originating from both winter and summer precipitation. However, the seasonal origins of water used by trees have not been systematically studied. We used stable isotopes of water to compare the seasonal origins of water found in three common tree species across 24 Swiss forest sites sampled in two different years. Water from winter precipitation was observed in trees at most sites, even at the peak of summer, although the relative representation of seasonal sources differed by species. However, the representation of winter precipitation in trees decreased with site mean annual precipitation in both years; additionally, it was generally lower in the cooler and wetter year. Together, these relationships show that precipitation amount influenced the seasonal origin of water taken up by trees across both time and space. These results suggest higher turnover of the plant-available soil-water pool in wetter sites and wetter years

    The influence of traffic and wood combustion on the stable isotopic composition of carbon monoxide

    Get PDF
    Carbon monoxide in the atmosphere is originating from various combustion and oxidation processes. Recently, the proportion of CO resulting from the combustion of wood for domestic heating may have increased due to political measures promoting this renewable energy source. Here, we used the stable isotope composition of CO (δ<sup>13</sup>C and δ<sup>18</sup>O) for the characterization of different CO sources in Switzerland, along with other indicators for traffic and wood combustion (NO<sub>x</sub>-concentration, aerosol light absorption at different wavelengths). We assessed diurnal variations of the isotopic composition of CO at 3 sites during winter: a village site dominated by domestic heating, a site close to a motorway and a rural site. The isotope ratios of wood combustion emissions were studied at a test facility, indicating significantly lower δ<sup>18</sup>O of CO from wood combustion compared to traffic emissions. At the village and the motorway site, we observed very pronounced diurnal δ<sup>18</sup>O-variations of CO with an amplitude of up to 8‰. Solving the isotope mass balance equation for three distinct sources (wood combustion, traffic, clean background air) resulted in diurnal patterns consistent with other indicators for wood burning and traffic. The average night-time contribution of wood-burning to total CO was 70% at the village site, 49% at the motorway site and 29% at the rural site based on the isotope mass balance. The results, however, depend strongly on the pure source isotope values, which are not very well known. We therefore additionally applied a combined CO/NO<sub>x</sub>-isotope model for verification. Here, we separated the CO emissions into different sources based on distinct CO/NO<sub>x</sub> emissions ratios for wood combustion and traffic, and inserted this information in the isotope mass balance equation. Accordingly, a highly significant agreement between measured and calculated δ<sup>18</sup>O-values of CO was found (<i>r</i>=0.67, <i>p</i><0.001). While different proxies for wood combustion all have their uncertainties, our results indicate that the oxygen isotope ratio of CO (but not the carbon isotope ratio) is an independent sensitive tool for source attribution studies

    Seasonal Origins of Soil Water Used by Trees

    Get PDF
    Rain recharges soil water storages and either percolates downward into aquifers and streams or is returned to the atmosphere through evapotranspiration. Although it is commonly assumed that summer rainfall recharges plant-available water during the growing season, the seasonal origins of water used by plants have not been systematically explored. We characterize the seasonal origins of waters in soils and trees by comparing their midsummer isotopic signatures (δ2H) to seasonal isotopic cycles in precipitation, using a new seasonal origin index. Across 182 Swiss forest sites, xylem water isotopic signatures show that summer rain was not the predominant water source for midsummer transpiration in any of the three sampled tree species. Beech and oak mostly used winter precipitation, whereas spruce used water of more diverse seasonal origins. Even in the same plots, beech consistently used more winter precipitation than spruce, demonstrating consistent niche partitioning in the rhizosphere. All three species\u27 xylem water isotopes indicate that trees used more winter precipitation in drier regions, potentially mitigating their vulnerability to summer droughts. The widespread occurrence of winter isotopic signatures in midsummer xylem implies that growing-season rainfall may have minimally recharged the soil water storages that supply tree growth, even across diverse humid climates (690–2068 mm annual precipitation). These results challenge common assumptions concerning how water flows through soils and is accessed by trees. Beyond these ecological and hydrological implications, our findings also imply that stable isotopes of δ18O and δ2H in plant tissues, which are often used in climate reconstructions, may not reflect water from growing-season climates

    Technical note: On uncertainties in plant water isotopic composition following extraction by cryogenic vacuum distillation

    Get PDF
    Recent studies have challenged the interpretation of plant water isotopes obtained through cryogenic vacuum distillation (CVD) based on observations of a large 2H fractionation. These studies have hypothesized the existence of an H-atom exchange between water and organic tissue during CVD extraction with the magnitude of H exchange related to relative water content of the sample; however, clear evidence is lacking. Here, we systematically tested the uncertainties in the isotopic composition of CVD-extracted water by conducting a series of incubation and rehydration experiments using isotopically depleted water, water at natural isotope abundance, woody materials with exchangeable H, and organic materials without exchangeable H (cellulose triacetate and caffeine). We show that the offsets between hydrogen and oxygen isotope ratios and expected reference values (Δ2H and Δ18O) have inversely proportional relationships with the absolute amount of water being extracted, i.e. the lower the water amount, the higher the Δ2H and Δ18O. However, neither Δ2H nor Δ18O values, were related to sample relative water content. The Δ2H pattern was more pronounced for materials with exchangeable H atoms than with non-exchangeable H atoms. This is caused by the combined effect of H exchange during the incubation of materials in water and isotopic enrichments during evaporation and sublimation that depend on absolute water amount. The H exchange during CVD extraction itself was negligible. Despite these technical issues, we observed that the water amount-dependent patterns were much less pronounced for samples at natural isotope abundance and particularly low when sufficiently high amounts of water were extracted (&gt;600 µL). Our study provides new insights into the mechanisms causing isotope fractionation during CVD extraction of water. The methodological uncertainties can be controlled if large samples of natural isotope abundance are used in ecohydrological studies.</p

    Technical Note: On Uncertainties in Plant Water Isotopic Composition Following Extraction by Cryogenic Vacuum Distillation

    Get PDF
    Recent studies have challenged the interpretation of plant water isotopes obtained through cryogenic vacuum distillation (CVD) based on observations of a large 2H fractionation. These studies have hypothesized the existence of an H-atom exchange between water and organic tissue during CVD extraction with the magnitude of H exchange related to relative water content of the sample; however, clear evidence is lacking. Here, we systematically tested the uncertainties in the isotopic composition of CVD-extracted water by conducting a series of incubation and rehydration experiments using isotopically depleted water, water at natural isotope abundance, woody materials with exchangeable H, and organic materials without exchangeable H (cellulose triacetate and caffeine). We show that the offsets between hydrogen and oxygen isotope ratios and expected reference values (Δ2H and Δ18O) have inversely proportional relationships with the absolute amount of water being extracted, i.e. the lower the water amount, the higher the Δ2H and Δ18O. However, neither Δ2H nor Δ18O values, were related to sample relative water content. The Δ2H pattern was more pronounced for materials with exchangeable H atoms than with non-exchangeable H atoms. This is caused by the combined effect of H exchange during the incubation of materials in water and isotopic enrichments during evaporation and sublimation that depend on absolute water amount. The H exchange during CVD extraction itself was negligible. Despite these technical issues, we observed that the water amount-dependent patterns were much less pronounced for samples at natural isotope abundance and particularly low when sufficiently high amounts of water were extracted (\u3e600 µL). Our study provides new insights into the mechanisms causing isotope fractionation during CVD extraction of water. The methodological uncertainties can be controlled if large samples of natural isotope abundance are used in ecohydrological studies

    Carbon allocation in shoots of alpine treeline conifers in a CO2 enriched environment

    Full text link
    With a new approach we assessed the relative contribution of stored and current carbon compounds to new shoot growth in alpine treeline conifers. Within a free air CO2 enrichment experiment at the alpine treeline in Switzerland, 13C-depleted fossil CO2 was used to trace new carbon in the two tree species Larix decidua L. and Pinus uncinata Ramond over two subsequent years. The deciduous L. decidua was found to supply new shoot growth (structural woody part) by 46% from storage. Surprisingly, the evergreen P. uncinata, assumed to use current-year photosynthates, also utilized a considerable fraction of storage (42%) for new wood growth. In contrast, the needles of P. uncinata were built up almost completely from current-year photosynthates. The isotopic composition of different wood carbon fractions revealed a similar relative allocation of current and stored assimilates to various carbon fractions. Elevated CO2 influenced the composition of woody tissue in a species-specific way, e.g. the water soluble fraction decreased in pine in 2001 but increased in larch in 2002 compared to ambient CO2. Heavy defoliation applied as an additional treatment factor in the second year of the experiment decreased the lipophilic fraction in current-year wood in both species compared to undefoliated trees. We conclude that storage may play an important role for new shoot growth in these treeline conifers and that altered carbon availability (elevated CO2, defoliation) results in significant changes in the relative amount of mobile carbon fractions in woody tissue. In particular, stored carbon seems to be of greater importance in the evergreen P. uncinata than has been previously thought
    • …
    corecore