38 research outputs found

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Molecular Characteristics of Repotrectinib That Enable Potent Inhibition of TRK Fusion Proteins and Resistant Mutations

    No full text
    chromosomal rearrangements yield oncogenic TRK fusion proteins that are sensitive to TRK inhibitors (larotrectinib and entrectinib) but often mutate, limiting the durability of response for patients. Next-generation inhibitors with compact macrocyclic structures (repotrectinib and selitrectinib) were designed to avoid resistance mutations. Head-to-head potency comparisons of TRK inhibitors and molecular characterization of binding interactions are incomplete, obscuring a detailed understanding of how molecular characteristics translate to potency. Larotrectinib, entrectinib, selitrectinib, and repotrectinib were characterized using cellular models of wild-type TRKA/B/C fusions and resistance mutant variants with a subset evaluated in xenograft tumor models. Crystal structures were determined for repotrectinib bound to TRKA (wild-type, solvent-front mutant). TKI-naïve and pretreated case studies are presented. Repotrectinib was the most potent inhibitor of wild-type TRKA/B/C fusions and was more potent than selitrectinib against all tested resistance mutations, underscoring the importance of distinct features of the macrocycle structures. Cocrystal structures of repotrectinib with wild-type TRKA and the TRKA SFM variant elucidated how differences in macrocyclic inhibitor structure, binding orientation, and conformational flexibility affect potency and mutant selectivity. The SFM crystal structure revealed an unexpected intramolecular arginine sidechain interaction. Repotrectinib caused tumor regression in xenograft models harboring GKM, SFM, xDFG, and GKM + SFM compound mutations. Durable responses were observed in TKI-naïve and -pretreated patients with cancers treated with repotrectinib (NCT03093116). This comprehensive analysis of first- and second-generation TRK inhibitors informs the clinical utility, structural determinants of inhibitor potency, and design of new generations of macrocyclic inhibitors
    corecore