9 research outputs found

    An automated, online feasibility randomized controlled trial of a just-in-time adaptive intervention for smoking cessation (Quit Sense)

    Get PDF
    Introduction: Learned smoking cues from a smoker’s environment are a major cause of lapse and relapse. Quit Sense, a theory-guided Just-In-Time Adaptive Intervention smartphone app, aims to help smokers learn about their situational smoking cues and provide in-the-moment support to help manage these when quitting. Methods: A two-arm feasibility randomized controlled trial (N = 209) to estimate parameters to inform a definitive evaluation. Smoker’s willing to make a quit attempt were recruited using online paid-for adverts and randomized to “usual care” (text message referral to NHS SmokeFree website) or “usual care” plus a text message invitation to install Quit Sense. Procedures, excluding manual follow-up for nonresponders, were automated. Follow-up at 6 weeks and 6 months included feasibility, intervention engagement, smoking-related, and economic outcomes. Abstinence was verified using cotinine assessment from posted saliva samples. Results: Self-reported smoking outcome completion rates at 6 months were 77% (95% CI 71%, 82%), viable saliva sample return rate was 39% (95% CI 24%, 54%), and health economic data 70% (95% CI 64%, 77%). Among Quit Sense participants, 75% (95% CI 67%, 83%) installed the app and set a quit date and, of those, 51% engaged for more than one week. The 6-month biochemically verified sustained abstinence rate (anticipated primary outcome for definitive trial), was 11.5% (12/104) among Quit Sense participants and 2.9% (3/105) for usual care (adjusted odds ratio = 4.57, 95% CIs 1.23, 16.94). No evidence of between-group differences in hypothesized mechanisms of action was found. Conclusions: Evaluation feasibility was demonstrated alongside evidence supporting the effectiveness potential of Quit Sense. Implications: Running a primarily automated trial to initially evaluate Quit Sense was feasible, resulting in modest recruitment costs and researcher time, and high trial engagement. When invited, as part of trial participation, to install a smoking cessation app, most participants are likely to do so, and, for those using Quit Sense, an estimated one-half will engage with it for more than 1 week. Evidence that Quit Sense may increase verified abstinence at 6-month follow-up, relative to usual care, was generated, although low saliva return rates to verify smoking status contributed to considerable imprecision in the effect size estimate

    A smoking cessation smartphone app that delivers real-time ‘context aware’ behavioural support: the Quit Sense feasibility RCT

    Get PDF
    BackgroundDuring a quit attempt, cues from a smoker’s environment are a major cause of brief smoking lapses, which increase the risk of relapse. Quit Sense is a theory-guided Just-In-Time Adaptive Intervention smartphone app, providing smokers with the means to learn about their environmental smoking cues and provides ‘in the moment’ support to help them manage these during a quit attempt.ObjectiveTo undertake a feasibility randomised controlled trial to estimate key parameters to inform a definitive randomised controlled trial of Quit Sense.DesignA parallel, two-arm randomised controlled trial with a qualitative process evaluation and a ‘Study Within A Trial’ evaluating incentives on attrition. The research team were blind to allocation except for the study statistician, database developers and lead researcher. Participants were not blind to allocation.SettingOnline with recruitment, enrolment, randomisation and data collection (excluding manual telephone follow-up) automated through the study website.ParticipantsSmokers (323 screened, 297 eligible, 209 enrolled) recruited via online adverts on Google search, Facebook and Instagram.InterventionsParticipants were allocated to ‘usual care’ arm (n = 105; text message referral to the National Health Service SmokeFree website) or ‘usual care’ plus Quit Sense (n = 104), via a text message invitation to install the Quit Sense app.Main outcome measuresFollow-up at 6 weeks and 6 months post enrolment was undertaken by automated text messages with an online questionnaire link and, for non-responders, by telephone. Definitive trial progression criteria were met if a priori thresholds were included in or lower than the 95% confidence interval of the estimate. Measures included health economic and outcome data completion rates (progression criterion #1 threshold: ≥ 70%), including biochemical validation rates (progression criterion #2 threshold: ≥ 70%), recruitment costs, app installation (progression criterion #3 threshold: ≥ 70%) and engagement rates (progression criterion #4 threshold: ≥ 60%), biochemically verified 6-month abstinence and hypothesised mechanisms of action and participant views of the app (qualitative).ResultsSelf-reported smoking outcome completion rates were 77% (95% confidence interval 71% to 82%) and health economic data (resource use and quality of life) 70% (95% CI 64% to 77%) at 6 months. Return rate of viable saliva samples for abstinence verification was 39% (95% CI 24% to 54%). The per-participant recruitment cost was £19.20, which included advert (£5.82) and running costs (£13.38). In the Quit Sense arm, 75% (95% CI 67% to 83%; 78/104) installed the app and, of these, 100% set a quit date within the app and 51% engaged with it for more than 1 week. The rate of 6-month biochemically verified sustained abstinence, which we anticipated would be used as a primary outcome in a future study, was 11.5% (12/104) in the Quit Sense arm and 2.9% (3/105) in the usual care arm (estimated effect size: adjusted odds ratio = 4.57, 95% CIs 1.23 to 16.94). There was no evidence of between-arm differences in hypothesised mechanisms of action. Three out of four progression criteria were met.The Study Within A Trial analysis found a £20 versus £10 incentive did not significantly increase follow-up rates though reduced the need for manual follow-up and increased response speed. The process evaluation identified several potential pathways to abstinence for Quit Sense, factors which led to disengagement with the app, and app improvement suggestions.LimitationsBiochemical validation rates were lower than anticipated and imbalanced between arms. COVID-19-related restrictions likely limited opportunities for Quit Sense to provide location tailored support.ConclusionsThe trial design and procedures demonstrated feasibility and evidence was generated supporting the efficacy potential of Quit Sense.Future workProgression to a definitive trial is warranted providing improved biochemical validation rates.Trial registrationThis trial is registered as ISRCTN12326962

    Testing to sustain hepatitis C elimination targets in people who inject drugs: a network-based model

    No full text
    Little is known about the level of testing required to sustain elimination of hepatitis C (HCV), once achieved. In this study, we model the testing coverage required to maintain HCV elimination in an injecting network of people who inject drugs (PWID). We test the hypothesis that network-based strategies are a superior approach to deliver testing. We created a dynamic injecting network structure connecting 689 PWID based on empirical data. The primary outcome was the testing coverage required per month to maintain prevalence at the elimination threshold over 5 years. We compared four testing strategies. Without any testing or treatment provision, the prevalence of HCV increased from the elimination threshold (11.68%) to a mean of 25.4% (SD 2.96%) over the 5-year period. To maintain elimination with random testing, on average, 4.96% (SD 0.83%) of the injecting network needs to be tested per month. However, with a ‘bring your friends’ strategy, this was reduced to 3.79% (SD 0.64%) of the network (p &lt;.001). The addition of contact tracing improved the efficiency of both strategies. In conclusion, we report that network-based approaches to testing such as ‘bring a friend’ initiatives and contact tracing lower the level of testing coverage required to maintain elimination.</p

    Conditional neural ODE processes for individual disease progression forecasting: a Case Study on COVID-19

    No full text
    Time series forecasting, as one of the fundamental machine learning areas, has attracted tremendous attentions over recent years. The solutions have evolved from statistical machine learning (ML) methods to deep learning techniques. One emerging sub-field of time series forecasting is individual disease progression forecasting, e.g., predicting individuals' disease development over a few days (e.g., deteriorating trends, recovery speed) based on few past observations. Despite the promises in the existing ML techniques, a variety of unique challenges emerge for disease progression forecasting, such as irregularly-sampled time series, data sparsity, and individual heterogeneity in disease progression. To tackle these challenges, we propose novel Conditional Neural Ordinary Differential Equations Processes (CNDPs), and validate it in a COVID-19 disease progression forecasting task using audio data. CNDPs allow for irregularly-sampled time series modelling, enable accurate forecasting with sparse past observations, and achieve individual-level progression forecasting. CNDPs show strong performance with an Unweighted Average Recall (UAR) of 78.1%, outperforming a variety of commonly used Recurrent Neural Networks based models. With the proposed label-enhancing mechanism (i.e., including the initial health status as input) and the customised individual-level loss, CNDPs further boost the performance reaching a UAR of 93.6%. Additional analysis also reveals the model's capability in tracking individual-specific recovery trend, implying the potential usage of the model for remote disease progression monitoring. In general, CNDPs pave new pathways for time series forecasting, and provide considerable advantages for disease progression monitoring.</p

    Evaluating Listening Performance for COVID-19 Detection by Clinicians and Machine Learning: Comparative Study

    No full text
    BackgroundTo date, performance comparisons between men and machines have been carried out in many health domains. Yet machine learning (ML) models and human performance comparisons in audio-based respiratory diagnosis remain largely unexplored. ObjectiveThe primary objective of this study was to compare human clinicians and an ML model in predicting COVID-19 from respiratory sound recordings. MethodsIn this study, we compared human clinicians and an ML model in predicting COVID-19 from respiratory sound recordings. Prediction performance on 24 audio samples (12 tested positive) made by 36 clinicians with experience in treating COVID-19 or other respiratory illnesses was compared with predictions made by an ML model trained on 1162 samples. Each sample consisted of voice, cough, and breathing sound recordings from 1 subject, and the length of each sample was around 20 seconds. We also investigated whether combining the predictions of the model and human experts could further enhance the performance in terms of both accuracy and confidence. ResultsThe ML model outperformed the clinicians, yielding a sensitivity of 0.75 and a specificity of 0.83, whereas the best performance achieved by the clinicians was 0.67 in terms of sensitivity and 0.75 in terms of specificity. Integrating the clinicians’ and the model’s predictions, however, could enhance performance further, achieving a sensitivity of 0.83 and a specificity of 0.92. ConclusionsOur findings suggest that the clinicians and the ML model could make better clinical decisions via a cooperative approach and achieve higher confidence in audio-based respiratory diagnosis

    Exploring longitudinal cough, breath, and voice data for COVID-19 progression prediction via sequential deep learning: model development and validation

    No full text
    Background: recent work has shown the potential of using audio data (eg, cough, breathing, and voice) in the screening for COVID-19. However, these approaches only focus on one-off detection and detect the infection, given the current audio sample, but do not monitor disease progression in COVID-19. Limited exploration has been put forward to continuously monitor COVID-19 progression, especially recovery, through longitudinal audio data. Tracking disease progression characteristics and patterns of recovery could bring insights and lead to more timely treatment or treatment adjustment, as well as better resource management in health care systems. Objective: the primary objective of this study is to explore the potential of longitudinal audio samples over time for COVID-19 progression prediction and, especially, recovery trend prediction using sequential deep learning techniques. Methods: crowdsourced respiratory audio data, including breathing, cough, and voice samples, from 212 individuals over 5-385 days were analyzed, alongside their self-reported COVID-19 test results. We developed and validated a deep learning–enabled tracking tool using gated recurrent units (GRUs) to detect COVID-19 progression by exploring the audio dynamics of the individuals’ historical audio biomarkers. The investigation comprised 2 parts: (1) COVID-19 detection in terms of positive and negative (healthy) tests using sequential audio signals, which was primarily assessed in terms of the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity, with 95% CIs, and (2) longitudinal disease progression prediction over time in terms of probability of positive tests, which was evaluated using the correlation between the predicted probability trajectory and self-reported labels. Results: we first explored the benefits of capturing longitudinal dynamics of audio biomarkers for COVID-19 detection. The strong performance, yielding an AUROC of 0.79, a sensitivity of 0.75, and a specificity of 0.71 supported the effectiveness of the approach compared to methods that do not leverage longitudinal dynamics. We further examined the predicted disease progression trajectory, which displayed high consistency with longitudinal test results with a correlation of 0.75 in the test cohort and 0.86 in a subset of the test cohort with 12 (57.1%) of 21 COVID-19–positive participants who reported disease recovery. Our findings suggest that monitoring COVID-19 evolution via longitudinal audio data has potential in the tracking of individuals’ disease progression and recovery. Conclusions: an audio-based COVID-19 progression monitoring system was developed using deep learning techniques, with strong performance showing high consistency between the predicted trajectory and the test results over time, especially for recovery trend predictions. This has good potential in the postpeak and postpandemic era that can help guide medical treatment and optimize hospital resource allocations. The changes in longitudinal audio samples, referred to as audio dynamics, are associated with COVID-19 progression; thus, modeling the audio dynamics can potentially capture the underlying disease progression process and further aid COVID-19 progression prediction. This framework provides a flexible, affordable, and timely tool for COVID-19 tracking, and more importantly, it also provides a proof of concept of how telemonitoring could be applicable to respiratory diseases monitoring, in general.</p

    Exploring Longitudinal Cough, Breath, and Voice Data for COVID-19 Progression Prediction via Sequential Deep Learning: Model Development and Validation.

    No full text
    BACKGROUND: Recent work has shown the potential of using audio data (eg, cough, breathing, and voice) in the screening for COVID-19. However, these approaches only focus on one-off detection and detect the infection, given the current audio sample, but do not monitor disease progression in COVID-19. Limited exploration has been put forward to continuously monitor COVID-19 progression, especially recovery, through longitudinal audio data. Tracking disease progression characteristics and patterns of recovery could bring insights and lead to more timely treatment or treatment adjustment, as well as better resource management in health care systems. OBJECTIVE: The primary objective of this study is to explore the potential of longitudinal audio samples over time for COVID-19 progression prediction and, especially, recovery trend prediction using sequential deep learning techniques. METHODS: Crowdsourced respiratory audio data, including breathing, cough, and voice samples, from 212 individuals over 5-385 days were analyzed, alongside their self-reported COVID-19 test results. We developed and validated a deep learning-enabled tracking tool using gated recurrent units (GRUs) to detect COVID-19 progression by exploring the audio dynamics of the individuals' historical audio biomarkers. The investigation comprised 2 parts: (1) COVID-19 detection in terms of positive and negative (healthy) tests using sequential audio signals, which was primarily assessed in terms of the area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity, with 95% CIs, and (2) longitudinal disease progression prediction over time in terms of probability of positive tests, which was evaluated using the correlation between the predicted probability trajectory and self-reported labels. RESULTS: We first explored the benefits of capturing longitudinal dynamics of audio biomarkers for COVID-19 detection. The strong performance, yielding an AUROC of 0.79, a sensitivity of 0.75, and a specificity of 0.71 supported the effectiveness of the approach compared to methods that do not leverage longitudinal dynamics. We further examined the predicted disease progression trajectory, which displayed high consistency with longitudinal test results with a correlation of 0.75 in the test cohort and 0.86 in a subset of the test cohort with 12 (57.1%) of 21 COVID-19-positive participants who reported disease recovery. Our findings suggest that monitoring COVID-19 evolution via longitudinal audio data has potential in the tracking of individuals' disease progression and recovery. CONCLUSIONS: An audio-based COVID-19 progression monitoring system was developed using deep learning techniques, with strong performance showing high consistency between the predicted trajectory and the test results over time, especially for recovery trend predictions. This has good potential in the postpeak and postpandemic era that can help guide medical treatment and optimize hospital resource allocations. The changes in longitudinal audio samples, referred to as audio dynamics, are associated with COVID-19 progression; thus, modeling the audio dynamics can potentially capture the underlying disease progression process and further aid COVID-19 progression prediction. This framework provides a flexible, affordable, and timely tool for COVID-19 tracking, and more importantly, it also provides a proof of concept of how telemonitoring could be applicable to respiratory diseases monitoring, in general

    Evaluating listening performance for COVID-19 detection by clinicians and machine learning: comparative study

    No full text
    Background: to date, performance comparisons between men and machines have been carried out in many health domains. Yet machine learning (ML) models and human performance comparisons in audio-based respiratory diagnosis remain largely unexplored.Objective: the primary objective of this study was to compare human clinicians and an ML model in predicting COVID-19 from respiratory sound recordings.Methods: in this study, we compared human clinicians and an ML model in predicting COVID-19 from respiratory sound recordings. Prediction performance on 24 audio samples (12 tested positive) made by 36 clinicians with experience in treating COVID-19 or other respiratory illnesses was compared with predictions made by an ML model trained on 1162 samples. Each sample consisted of voice, cough, and breathing sound recordings from 1 subject, and the length of each sample was around 20 seconds. We also investigated whether combining the predictions of the model and human experts could further enhance the performance in terms of both accuracy and confidence.Results: the ML model outperformed the clinicians, yielding a sensitivity of 0.75 and a specificity of 0.83, whereas the best performance achieved by the clinicians was 0.67 in terms of sensitivity and 0.75 in terms of specificity. Integrating the clinicians’ and the model’s predictions, however, could enhance performance further, achieving a sensitivity of 0.83 and a specificity of 0.92.Conclusions: our findings suggest that the clinicians and the ML model could make better clinical decisions via a cooperative approach and achieve higher confidence in audio-based respiratory diagnosis
    corecore