14,196 research outputs found
Effect of Fin Passage Length on Optimization of Cylinder Head Cooling Fins
The heat transfer performance of baffled cooling fins on cylinder heads of small, air-cooled, general-aviation aircraft engines was analyzed to determine the potential for improving cooling fin design. Flow baffles were assumed to be installed tightly against the fin end edges, an ideal baffle configuration for guiding all flow between the fins. A rectangular flow passage is thereby formed between each set of two adjacent fins, the fin base surface, and the baffle. These passages extend around each side of the cylinder head, and the cooling air absorbs heat as it flows within them. For each flow passage length, the analysis was concerned with optimizing fin spacing and thickness to achieve the best heat transfer for each fin width. Previous literature has been concerned mainly with maximizing the local fin conductance and has not considered the heating of the gas in the flow direction, which leads to higher wall temperatures at the fin passage exits. If the fins are close together, there is a large surface area, but the airflow is restricted
Subcritical Superstrings
We introduce the Liouville mode into the Green-Schwarz superstring. Like
massive supersymmetry without central charges, there is no kappa symmetry.
However, the second-class constraints (and corresponding Wess-Zumino term)
remain, and can be solved by (twisted) chiral superspace in dimensions D=4 and
6. The matter conformal anomaly is c = 4-D < 1. It thus can be canceled for
physical dimensions by the usual Liouville methods, unlike the bosonic string
(for which the consistency condition is c = D <= 1).Comment: 9 pg., compressed postscript file (.ps.Z), other formats (.dvi, .ps,
.ps.Z, 8-bit .tex) available at
http://insti.physics.sunysb.edu/~siegel/preprints/ or at
ftp://max.physics.sunysb.edu/preprints/siege
Energy and width measurements of low-Z pionic X-ray transitions
High resolution spectrometric measurement of energy and natural line widths of 2p-1s pionic X ray transitions, as well as muonic transition energies in Li, Be, B, and C isotope
A new measurement of the lifetime of the positive pion
Digital timing method for measuring positive pion lifetim
Lie Superalgebra Stability and Branes
The algebra of the generators of translations in superspace is unstable, in
the sense that infinitesimal perturbations of its structure constants lead to
non-isomorphic algebras. We show how superspace extensions remedy this
situation (after arguing that remedy is indeed needed) and review the benefits
reaped in the description of branes of all kinds in the presence of the extra
dimensions.Comment: Talk given at the conference ``Brane New World and Non-commutative
Geometry'', held in Torino, October 2000. To appear in the proceedings by
World Scientific. 10 pages, 1 figur
Dimensional Reduction in Non-Supersymmetric Theories
It is shown that regularisation by dimensional reduction is a viable
alternative to dimensional regularisation in non-supersymmetric theories.Comment: 13 pages, phyzzx, LTH 32
Thermalization via Heat Radiation of an Individual Object Thinner than the Thermal Wavelength
Modeling and investigating the thermalization of microscopic objects with
arbitrary shape from first principles is of fundamental interest and may lead
to technical applications. Here, we study, over a large temperature range, the
thermalization dynamics due to far-field heat radiation of an individual,
deterministically produced silica fiber with a predetermined shape and a
diameter smaller than the thermal wavelength. The temperature change of the
subwavelength-diameter fiber is determined through a measurement of its optical
path length in conjunction with an ab initio thermodynamic model of the fiber
structure. Our results show excellent agreement with a theoretical model that
considers heat radiation as a volumetric effect and takes the emitter shape and
size relative to the emission wavelength into account
Constraining the History of the Sagittarius Dwarf Galaxy Using Observations of its Tidal Debris
We present a comparison of semi-analytic models of the phase-space structure
of tidal debris with observations of stars associated with the Sagittarius
dwarf galaxy (Sgr). We find that many features in the data can be explained by
these models. The properties of stars 10-15 degrees away from the center of Sgr
--- in particular, the orientation of material perpendicular to Sgr's orbit
(c.f. Alard 1996) and the kink in the velocity gradient (Ibata et al 1997) ---
are consistent with those expected for unbound material stripped during the
most recent pericentric passage ~50 Myrs ago. The break in the slope of the
surface density seen by Mateo, Olszewski & Morrison (1998) at ~ b=-35 can be
understood as marking the end of this material. However, the detections beyond
this point are unlikely to represent debris in a trailing streamer, torn from
Sgr during the immediately preceding passage ~0.7 Gyrs ago, but are more
plausibly explained by a leading streamer of material that was lost more that 1
Gyr ago and has wrapped all the way around the Galaxy. The observations
reported in Majewski et al (1999) also support this hypothesis. We determine
debris models with these properties on orbits that are consistent with the
currently known positions and velocities of Sgr in Galactic potentials with
halo components that have circular velocities v_circ=140-200 km/s. The best
match to the data is obtained in models where Sgr currently has a mass of ~10^9
M_sun and has orbited the Galaxy for at least the last 1 Gyr, during which time
it has reduced its mass by a factor of 2-3, or luminosity by an amount
equivalent to ~10% of the total luminosity of the Galactic halo. These numbers
suggest that Sgr is rapidly disrupting and unlikely to survive beyond a few
more pericentric passages.Comment: 19 pages, 5 figures, accepted to Astronomical Journa
A twistor-like D=10 superparticle action with manifest N=8 world-line supersymmetry
We propose a new formulation of the Brink-Schwarz superparticle which
is manifestly invariant under both the target-space super-Poincar\'e group and
the world-line local superconformal group. This twistor-like construction
naturally involves the sphere as a coset space of the Lorentz
group. The action contains only a finite set of auxiliary fields, but they
appear in unusual trilinear combinations. The origin of the on-shell
fermionic symmetry of the standard Brink-Schwarz formulation is
explained. The coupling to a super-Maxwell background requires a new
mechanism, in which the electric charge appears only on shell as an integration
constant.Comment: 22pages, standard LATEX fil
Non-Metric Gravity I: Field Equations
We describe and study a certain class of modified gravity theories. Our
starting point is Plebanski formulation of gravity in terms of a triple B^i of
2-forms, a connection A^i and a ``Lagrange multiplier'' field Psi^ij. The
generalization we consider stems from presence in the action of an extra term
proportional to a scalar function of Psi^ij. As in the usual Plebanski general
relativity (GR) case, a certain metric can be constructed from B^i. However,
unlike in GR, the connection A^i no longer coincides with the self-dual part of
the metric-compatible spin-connection. Field equations of the theory are shown
to be relations between derivatives of the metric and components of field Psi,
as well as its derivatives, the later being in contrast to the GR case. The
equations are of second order in derivatives. An analog of the Bianchi identity
is still present in the theory, as well as its contracted version tantamount to
energy conservation equation.Comment: 21 pages, no figures (v2) energy conservation equation simplified,
note on reality conditions added (v3) minor change
- …