18,084 research outputs found

    A proposal for a first class conversion formalism based on the symmetries of the Wess-Zumino terms

    Get PDF
    We propose a new procedure to embed second class systems by introducing Wess-Zumino (WZ) fields in order to unveil hidden symmetries existent in the models. This formalism is based on the direct imposition that the new Hamiltonian must be invariant by gauge-symmetry transformations. An interesting feature in this approach is the possibility to find a representation for the WZ fields in a convenient way, which leads to preserve the gauge symmetry in the original phase space. Consequently, the gauge-invariant Hamiltonian can be written only in terms of the original phase-space variables. In this situation, the WZ variables are only auxiliary tools that permit to reveal the hidden symmetries present in the original second class model. We apply this formalism to important physical models: the reduced-SU(2) Skyrme model, the Chern-Simons-Proca quantum mechanics and the chiral bosons field theory. In all these systems, the gauge-invariant Hamiltonians are derived in a very simple way.Comment: Revised version. Title changed for Gauging by symmetries. To appear in IJMP

    Potential of a New Technique for Remote Sensing of Hydrocarbon Accumulations and Blind Uranium Deposits: Buried Lif Thermoluminescence Dosimeters

    Get PDF
    Buried thermoluminescence dosimeters may be useful in remote sensing of petroleum and natural gas accumulations and blind uranium deposits. They act as integrating detectors that smooth out the effects of environmental variations that affect other measuring systems and result in irregularities and poor repeatability in measurements made during gas and radiometric surveys

    The Isometries of Low-Energy Heterotic M-Theory

    Full text link
    We study the effective D=4, N=1 supergravity description of five-dimensional heterotic M-theory in the presence of an M5 brane, and derive the Killing vectors and isometry group for the Kahler moduli-space metric. The group is found to be a non-semisimple maximal parabolic subgroup of Sp(4,R), containing a non-trivial SL(2,R) factor. The underlying moduli-space is then naturally realised as the group space Sp(4,R)/U(2), but equipped with a nonhomogeneous metric that is invariant only under that maximal parabolic group. This nonhomogeneous metric space can also be derived via field truncations and identifications performed on Sp(8,R)/U(4) with its standard homogeneous metric. In a companion paper we use these symmetries to derive new cosmological solutions from known ones.Comment: 11 pages, 1 table; two foonotes added, minor corrections to conten

    Green-Schwarz Formulation of Self-Dual Superstring

    Full text link
    The self-dual superstring has been described previously in a Neveu-Schwarz-Ramond formulation with local N=2 or 4 world-sheet supersymmetry. We present a Green-Schwarz-type formulation, with manifest spacetime supersymmetry.Comment: 11 pg., (uuencoded dvi file) ITP-SB-92-5

    Effectively Closed Infinite-Genus Surfaces and the String Coupling

    Full text link
    The class of effectively closed infinite-genus surfaces, defining the completion of the domain of string perturbation theory, can be included in the category OGO_G, which is characterized by the vanishing capacity of the ideal boundary. The cardinality of the maximal set of endpoints is shown to be 2^{\mit N}. The product of the coefficient of the genus-g superstring amplitude in four dimensions by 2g2^g in the gg\to \infty limit is an exponential function of the genus with a base comparable in magnitude to the unified gauge coupling. The value of the string coupling is consistent with the characteristics of configurations which provide a dominant contribution to a finite vacuum amplitude.Comment: TeX, 33 page

    Versatile liquid helium scintillation counter of large volume design

    Get PDF
    Design and performance of large liquid helium scintillation counter for meson experiment

    Behavioural clusters and predictors of performance during recovery from stroke

    Get PDF
    We examined the patterns and variability of recovery post-stroke in multiple behavioral domains. A large cohort of first time stroke patients with heterogeneous lesions was studied prospectively and longitudinally at 1-2 weeks, 3 months and one year post-injury with structural MRI to measure lesion anatomy and in-depth neuropsychological assessment. Impairment was described at all timepoints by a few clusters of correlated deficits. The time course and magnitude of recovery was similar across domains, with change scores largely proportional to the initial deficit and most recovery occurring within the first three months. Damage to specific white matter tracts produced poorer recovery over several domains: attention and superior longitudinal fasciculus II/III, language and posterior arcuate fasciculus, motor and corticospinal tract. Finally, after accounting for the severity of the initial deficit, language and visual memory recovery/outcome was worse with lower education, while the occurrence of multiple deficits negatively impacted attention recovery

    Self-Dual N=8 Supergravity as Closed N=2(4) Strings

    Full text link
    As open N=2 or 4 strings describe self-dual N=4 super Yang-Mills in 2+2 dimensions, the corresponding closed (heterotic) strings describe self-dual ungauged (gauged) N=8 supergravity. These theories are conveniently formulated in a chiral superspace with general supercoordinate and local OSp(8|2) gauge invariances. The super-light-cone and covariant-component actions are analyzed. Because only half the Lorentz group is gauged, the gravity field equation is just the vanishing of the torsion.Comment: 17 pg., (uuencoded dvi file; revision: forgot 1 stupid term in the last equation) ITP-SB-92-3
    corecore