11 research outputs found

    A positron emission tomography imaging study to confirm target engagement in the lungs of patients with idiopathic pulmonary fibrosis following a single dose of a novel inhaled αvβ6 integrin inhibitor

    Get PDF
    © 2020 The Author(s). Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease with poor prognosis and a significant unmet medical need. This study evaluated the safety, pharmacokinetics (PK) and target engagement in the lungs, of GSK3008348, a novel inhaled alpha-v beta-6 (αvβ6) integrin inhibitor, in participants with IPF. Methods: This was a phase 1b, randomised, double-blind (sponsor unblind) study, conducted in the UK (two clinical sites, one imaging unit) between June 2017 and July 2018 (NCT03069989). Participants with a definite or probable diagnosis of IPF received a single nebulised dose of 1000 mcg GSK3008348 or placebo (ratio 5:2) in two dosing periods. In period 1, safety and PK assessments were performed up to 24 h post-dose; in period 2, after a 7-day to 28-day washout, participants underwent a total of three positron emission tomography (PET) scans: Baseline, Day 1 (~ 30 min post-dosing) and Day 2 (~ 24 h post-dosing), using a radiolabelled αvβ6-specific ligand, [18F]FB-A20FMDV2. The primary endpoint was whole lung volume of distribution (VT), not corrected for air volume, at ~ 30 min post-dose compared with pre-dose. The study success criterion, determined using Bayesian analysis, was a posterior probability (true % reduction in VT > 0%) of ≥80%. Results: Eight participants with IPF were enrolled and seven completed the study. Adjusted posterior median reduction in uncorrected VT at ~ 30 min after GSK3008348 inhalation was 20% (95% CrI:-9 to 42%). The posterior probability that the true % reduction in VT > 0% was 93%. GSK3008348 was well tolerated with no reports of serious adverse events or clinically significant abnormalities that were attributable to study treatment. PK was successfully characterised showing rapid absorption followed by a multiphasic elimination. Conclusions: This study demonstrated engagement of the αvβ6 integrin target in the lung following nebulised dosing with GSK3008348 to participants with IPF. To the best of our knowledge this is the first time a target-specific PET radioligand has been used to assess target engagement in the lung, not least for an inhaled drug. Trial registration: Clinicaltrials.gov: NCT03069989; date of registration: 3 March 2017

    Safety, Tolerability and Pharmacokinetics of Single Doses of Oxytocin Administered via an Inhaled Route in Healthy Females:Randomized, Single-blind, Phase 1 Study

    No full text
    Background: The utility of intramuscular (IM) oxytocin for the prevention of postpartum hemorrhage in resource-poor settings is limited by the requirement for temperature-controlled storage and skilled staff to administer the injection. We evaluated the safety, tolerability and pharmacokinetics (PK) of a heat-stable, inhaled (IH) oxytocin formulation. Methods: This phase 1, randomized, single-center, single-blind, dose-escalation, fixed-sequence study (NCT02542813) was conducted in healthy, premenopausal, non-pregnant, non-lactating women aged 18–45 years. Subjects initially received IM oxytocin 10 international units (IU) on day 1, IH placebo on day 2, and IH oxytocin 50 μg on day 3. Subjects were then randomized 4:1 using validated GSK internal software to IH placebo or ascending doses of IH oxytocin (200, 400, 600 μg). PK was assessed by comparing systemic exposure (maximum observed plasma concentration, area under the concentration-time curve, and plasma concentrations at 10 and 30 min post dose) for IH versus IM oxytocin. Adverse events (AEs), spirometry, laboratory tests, vital signs, electrocardiograms, physical examinations, and cardiac telemetry were assessed. Findings: Subjects were recruited between September 14, 2015 and October 12, 2015. Of the 16 subjects randomized following initial dosing, 15 (IH placebo n = 3; IH oxytocin n = 12) completed the study. IH (all doses) and IM oxytocin PK profiles were comparable in shape. However, systemic exposure with IH oxytocin 400 μg most closely matched IM oxytocin 10 IU. Systemic exposure was approximately dose proportional for IH oxytocin. No serious AEs were reported. No clinically significant findings were observed for any safety parameters. Interpretation: These data suggest that similar oxytocin systemic exposure can be achieved with IM and IH administration routes, and no safety concerns were identified with either route. The inhalation route may offer the opportunity to increase access to oxytocin for women giving birth in resource-poor settings

    An open-label, dose-escalation study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of single doses of GSK2586881 in participants with pulmonary arterial hypertension.

    No full text
    Preclinical and early clinical studies suggest that angiotensin-converting enzyme type 2 activity may be impaired in patients with pulmonary arterial hypertension (PAH); therefore, administration of exogenous angiotensin-converting enzyme type 2 (ACE2) may be beneficial. This Phase IIa, multi-center, open-label, exploratory, single-dose, dose-escalation study (NCT03177603) assessed the potential vasodilatory effects of single doses of GSK2586881 (a recombinant human ACE2) on acute cardiopulmonary hemodynamics in hemodynamically stable adults with documented PAH who were receiving background PAH therapy. Successive cohorts of participants were administered a single intravenous dose of GSK2586881 of 0.1, 0.2, 0.4, or 0.8 mg/kg. Dose escalation occurred after four or more participants per cohort were dosed and a review of safety, tolerability, pharmacokinetics, and hemodynamic data up to 24 h postdose was undertaken. The primary endpoint was a change in cardiopulmonary hemodynamics (pulmonary vascular resistance, cardiac index, and mean pulmonary artery pressure) from baseline. Secondary/exploratory objectives included safety and tolerability, effect on renin-angiotensin system peptides, and pharmacokinetics. GSK2586881 demonstrated no consistent or sustained effect on acute cardiopulmonary hemodynamics in participants with PAH receiving background PAH therapy (N = 23). All doses of GSK2586881 were well tolerated. GSK2586881 was quantifiable in plasma for up to 4 h poststart of infusion in all participants and caused a consistent and sustained reduction in angiotensin II and a corresponding increase in angiotensin (1-7) and angiotensin (1-5). While there does not appear to be a consistent acute vasodilatory response to single doses of GSK2586881 in participants with PAH, the potential benefits in terms of chronic vascular remodeling remain to be determined

    A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome

    No full text
    Background: Renin-angiotensin system (RAS) signaling and angiotensin-converting enzyme 2 (ACE2) have been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS). We postulated that repleting ACE2 using GSK2586881, a recombinant form of human angiotensin-converting enzyme 2 (rhACE2), could attenuate acute lung injury. Methods: We conducted a two-part phase II trial comprising an open-label intrapatient dose escalation and a randomized, double-blind, placebo-controlled phase in ten intensive care units in North America. Patients were between the ages of 18 and 80 years, had an American-European Consensus Criteria consensus diagnosis of ARDS, and had been mechanically ventilated for less than 72 h. In part A, open-label GSK2586881 was administered at doses from 0.1 mg/kg to 0.8 mg/kg to assess safety, pharmacokinetics, and pharmacodynamics. Following review of data from part A, a randomized, double-blind, placebo-controlled investigation of twice-daily doses of GSK2586881 (0.4 mg/kg) for 3 days was conducted (part B). Biomarkers, physiological assessments, and clinical endpoints were collected over the dosing period and during follow-up. Results: Dose escalation in part A was well-tolerated without clinically significant hemodynamic changes. Part B was terminated after 39 of the planned 60 patients following a planned futility analysis. Angiotensin II levels decreased rapidly following infusion of GSK2586881, whereas angiotensin-(1–7) and angiotensin-(1–5) levels increased and remained elevated for 48 h. Surfactant protein D concentrations were increased, whereas there was a trend for a decrease in interleukin-6 concentrations in rhACE2-treated subjects compared with placebo. No significant differences were noted in ratio of partial pressure of arterial oxygen to fraction of inspired oxygen, oxygenation index, or Sequential Organ Failure Assessment score. Conclusions: GSK2586881 was well-tolerated in patients with ARDS, and the rapid modulation of RAS peptides suggests target engagement, although the study was not powered to detect changes in acute physiology or clinical outcomes. Trial registration ClinicalTrials.gov, NCT01597635 . Registered on 26 January 2012.Other UBCNon UBCReviewedFacult
    corecore