20 research outputs found

    Corticosteroid effects on diaphragm neuromuscular junctions

    No full text
    Item does not contain fulltex

    Corticosteroid effects on isotonic contractile properties of rat diaphragm muscle

    Get PDF
    Contains fulltext : 25523___.PDF (publisher's version ) (Open Access

    Influence of corticosteroids on myonuclear domain size in the rat diaphragm muscle.

    No full text
    Contains fulltext : 58080.pdf (publisher's version ) (Closed access)Skeletal muscle fibers are multinucleated. Each myonucleus regulates gene products and protein expression in only a restricted portion of the muscle fiber, the myonuclear domain (MND). In the rat diaphragm muscle (DIAm), corticosteroid (CoS) treatment causes atrophy of fibers containing myosin heavy chain (MHC): MHC2X and/or MHC2B. We hypothesized that DIAm fiber MND size is maintained during CoS-induced atrophy. Adult male rats received methylprednisolone for 11 days at 1 (CoS-Low, n = 8) or 8 mg x kg(-1) x day(-1) (CoS-High, n = 8). Age-matched (CTL-AgeM, n = 8), sham-operated (SHAM-AgeM, n = 8), and weight-matched (CTL-WtM, n = 8) animals served as controls. In single DIAm fibers, cross-sectional area (CSA), MND size, and MHC expression were determined. Fiber CSA and MND size were similar in CTL-AgeM and SHAM-AgeM groups. Only fibers containing MHCslow or MHC2A displayed smaller CSA in CTL-WtM than in CTL-AgeM and SHAM-AgeM groups, and MND size was reduced in all fibers. Thus fibers containing MHCslow and MHC2A maintain the number of myonuclei, whereas MHC2X or MHC2B fibers show loss of myonuclei during normal muscle growth. Both CoS groups displayed smaller CSA and MND size than CTL-AgeM and SHAM-AgeM groups. However, compared with CTL-WtM DIAm fibers, only fibers containing MHC2X or MHC2B displayed reduced CSA and MND size after CoS treatment. Thus little, if any, loss of myonuclei was associated with CoS-induced atrophy of MHC2X or MHC2B DIAm fibers. In summary, MND size does not appear to be regulated during CoS-induced DIAm atrophy

    Non-Random Distribution and Sensory Functions of Primary Cilia in Vascular Smooth Muscle Cells

    No full text
    Although primary cilia are increasingly recognized to play sensory roles in several cellular systems, their role in vascular smooth muscle cells (VSMCs) has not been defined. We examined in situ position/orientation of primary cilia and ciliary proteins in VSMCs and tested the hypothesis that primary cilia of VSMCs exert sensory functions. By immunofluorescence and electron microscopic imaging, primary cilia of VSMCs were positioned with their long axis aligned at 58.3° angle in relation to the cross-sectional plane of the artery, projecting into the extracellular matrix (ECM). Polycystin-1, polycystin-2 and α3- and β1-integrins are present in cilia. In scratch wound experiments, the majority of cilia were repositioned to the cell-wound interface. Such repositioning was largely abolished by a β1-integrin blocker. Moreover, compared to non-ciliated/deciliated cells, ciliated VSMCs showed more efficient migration in wound repair. Lastly, when directly stimulated with collagen (an ECM component and cognate ligand for α3β1-integrins) or induced ciliary deflection, VSMCs responded with a rise in [Ca(2+)](i) that is dependent on the presence of cilia. Taken together, primary cilia of VSMCs are preferentially oriented, possess proteins critical for cell-ECM interaction and mechanosensing and respond to ECM protein and mechanical stimulations. These observations suggest a role for primary cilia in mechanochemical sensing in vasculature
    corecore