2,174 research outputs found

    The QCD analysis of xF_3 structure function based on the analytic approach

    Full text link
    We apply analytic perturbation theory to the QCD analysis of the xF_3 structure function data of the CCFR collaboration. We use different approaches for the leading order Q^2 evolution of the xF_3 structure function and compare the extracted values of the parameter Lambda_QCD and the shape of the higher twistcontribution. Our consideration is based on the Jacobi polynomial expansion method of the unpolarized structure function. The analysis shows that the analytic approach provides reasonable results in the leading order QCD analysis.Comment: 7 pages, 5 figure

    Effect of Magnetization Inhomogeneity on Magnetic Microtraps for Atoms

    Get PDF
    We report on the origin of fragmentation of ultracold atoms observed on a permanent magnetic film atom chip. A novel technique is used to characterize small spatial variations of the magnetic field near the film surface using radio frequency spectroscopy of the trapped atoms. Direct observations indicate the fragmentation is due to a corrugation of the magnetic potential caused by long range inhomogeneity in the film magnetization. A model which takes into account two-dimensional variations of the film magnetization is consistent with the observations.Comment: 4 pages, 4 figure

    Condensate splitting in an asymmetric double well for atom chip based sensors

    Full text link
    We report on the adiabatic splitting of a BEC of 87^{87}Rb atoms by an asymmetric double-well potential located above the edge of a perpendicularly magnetized TbGdFeCo film atom chip. By controlling the barrier height and double-well asymmetry the sensitivity of the axial splitting process is investigated through observation of the fractional atom distribution between the left and right wells. This process constitutes a novel sensor for which we infer a single shot sensitivity to gravity fields of δg/g≈2×10−4\delta g/g\approx2\times10^{-4}. From a simple analytic model we propose improvements to chip-based gravity detectors using this demonstrated methodology.Comment: 4 pages, 5 figure

    Precision measurements of s-wave scattering lengths in a two-component Bose-Einstein condensate

    Full text link
    We use collective oscillations of a two-component Bose-Einstein condensate (2CBEC) of \Rb atoms prepared in the internal states ∣1⟩≡∣F=1,mF=−1⟩\ket{1}\equiv\ket{F=1, m_F=-1} and ∣2⟩≡∣F=2,mF=1⟩\ket{2}\equiv\ket{F=2, m_F=1} for the precision measurement of the interspecies scattering length a12a_{12} with a relative uncertainty of 1.6×10−41.6\times 10^{-4}. We show that in a cigar-shaped trap the three-dimensional (3D) dynamics of a component with a small relative population can be conveniently described by a one-dimensional (1D) Schr\"{o}dinger equation for an effective harmonic oscillator. The frequency of the collective oscillations is defined by the axial trap frequency and the ratio a12/a11a_{12}/a_{11}, where a11a_{11} is the intra-species scattering length of a highly populated component 1, and is largely decoupled from the scattering length a22a_{22}, the total atom number and loss terms. By fitting numerical simulations of the coupled Gross-Pitaevskii equations to the recorded temporal evolution of the axial width we obtain the value a12=98.006(16) a0a_{12}=98.006(16)\,a_0, where a0a_0 is the Bohr radius. Our reported value is in a reasonable agreement with the theoretical prediction a12=98.13(10) a0a_{12}=98.13(10)\,a_0 but deviates significantly from the previously measured value a12=97.66 a0a_{12}=97.66\,a_0 \cite{Mertes07} which is commonly used in the characterisation of spin dynamics in degenerate \Rb atoms. Using Ramsey interferometry of the 2CBEC we measure the scattering length a22=95.44(7) a0a_{22}=95.44(7)\,a_0 which also deviates from the previously reported value a22=95.0 a0a_{22}=95.0\,a_0 \cite{Mertes07}. We characterise two-body losses for the component 2 and obtain the loss coefficients γ12=1.51(18)×10−14cm3/s{\gamma_{12}=1.51(18)\times10^{-14} \textrm{cm}^3/\textrm{s}} and γ22=8.1(3)×10−14cm3/s{\gamma_{22}=8.1(3)\times10^{-14} \textrm{cm}^3/\textrm{s}}.Comment: 11 pages, 8 figure

    Two Superconducting Phases in CeRh_1-xIr_xIn_5

    Full text link
    Pressure studies of CeRh_1-xIr_xIn_5 indicate two superconducting phases as a function of x, one with T_c >= 2 K for x < 0.9 and the other with T_c < 1.2 K for x > 0.9. The higher T_c phase, phase-1, emerges in proximity to an antiferromagnetic quantum-critical point; whereas, Cooper pairing in the lower T_c phase-2 is inferred to arise from fluctuations of a yet to be found magnetic state. The T-x-P phase diagram of CeRh_1-xIr_xIn_5, though qualitatively similar, is distinctly different from that of CeCu_2(Si_1-xGe_x)_2.Comment: 5 pages, 3 figure
    • …
    corecore