19 research outputs found

    Silencing porcine CMAH and GGTA1 genes significantly reduces xenogeneic consumption of human platelets by porcine livers

    Get PDF
    BACKGROUND: A profound thrombocytopenia limits hepatic xenotransplantation in the pig-to-primate model. Porcine livers also have shown the ability to phagocytose human platelets in the absence of immune-mediated injury. Recently, inactivation of the porcine ASGR1 gene has been shown to decrease this phenomenon. Inactivating GGTA1 and CMAH genes has reduced the antibody-mediated barrier to xenotransplantation; herein, we describe the effect that these modifications have on xenogeneic consumption of human platelets in the absence of immune-mediated graft injury. METHODS: Wild type (WT), ASGR1, GGTA1, and GGTA1CMAH knockout pigs were compared for their xenogeneic hepatic consumption of human platelets. An in vitro assay was established to measure the association of human platelets with liver sinusoidal endothelial cells (LSECs) by immunohistochemistry. Perfusion models were used to measure human platelet uptake in livers from WT, ASGR1, GGTA1, and GGTA1 CMAH pigs. RESULTS: GGTA1, CMAH LSECs exhibited reduced levels of human platelet binding in vitro when compared with GGTA1 and WT LSECs. In a continuous perfusion model, GGTA1 CMAH livers consumed fewer human platelets than GGTA1 and WT livers. GGTA1 CMAH livers also consumed fewer human platelets than ASGR1 livers in a single-pass model. CONCLUSIONS: Silencing the porcine carbohydrate genes necessary to avoid antibody-mediated rejection in a pig-to-human model also reduces the xenogeneic consumption of human platelets by the porcine liver. The combination of these genetic modifications may be an effective strategy to limit the thrombocytopenia associated with pig-to-human hepatic xenotransplantation

    Reduced human platelet uptake by pig livers deficient in the asialoglycoprotein receptor 1 protein

    Get PDF
    BACKGROUND: The lethal thrombocytopenia that accompanies liver xenotransplantation is a barrier to clinical application. Human platelets are bound by the asialoglycoprotein receptor (ASGR) on pig sinusoidal endothelial cells and phagocytosed. Inactivation of the ASGR1 gene in donor pigs may prevent xenotransplantation-induced thrombocytopenia. METHODS: Transcription activator-like effector nucleases (TALENs) were targeted to the ASGR1 gene in pig liver-derived cells. ASGR1 deficient pig cells were used for somatic cell nuclear transfer (SCNT). ASGR1 knock out (ASGR1-/-) fetal fibroblasts were used to produce healthy ASGR1 knock out piglets. Human platelet uptake was measured in ASGR1+/+ and ASGR1-/- livers. RESULTS: Targeted disruption of the ASGR1 gene with TALENs eliminated expression of the receptor. ASGR1-/- livers phagocytosed fewer human platelets than domestic porcine livers during perfusion. CONCLUSIONS: The use of TALENs in liver-derived cells followed by SCNT enabled the production of healthy homozygous ASGR1 knock out pigs. Livers from ASGR1-/- pigs exhibit decreased human platelet uptake. Deletion of the ASGR1 gene is a viable strategy to diminish platelet destruction in pig-to-human xenotransplantation

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Full text link

    Efficient selection of Gal-knockout pig cells for somatic cell nuclear transfer

    No full text
    The process of selecting transgenic cells has been one of the bottlenecks in the generation of transgenic animals by somatic cell nuclear transfer (SCNT). In particular, selection for the Gal double-knockout (Gal-DKO) genotype has been time consuming and inefficient. The objective of this work was to generate a highly efficient system to select Gal-DKO cells to be used in SCNT without affecting the efficiency in production of Gal-null pigs. Fetal liver–derived cells deficient in Gal-expression were initially selected by fluorescence-activated cell sorting (FACS) using IB4 conjugated to a fluorescent dye. Cells recovered by FACS were cultured and expanded, followed by a second round of selection using streptavidin magnetic beads and IB4 lectin biotin. Recovery efficiency of target cells was 0.04% for the first selection using FACS and 0.3% for the second round by magnetic beads. Full reprogramming was obtained on selected Gal-DKO cells after FACS and magnetic beads selection, when used for SCNT to produce the Gal-null piglets. Cells obtained from magnetic beads developed 48 colonies; the Gal-null genotype was found in 44 of them (91.7%). Three of these colonies were used to generate piglets by SCNT. From three recipients receiving embryos, two became pregnant and produced 17 piglets, all of them DKO. Sequential selection of Gal-DKO cells by FACS/magnetic beads is a highly efficient system to generate null cells. Selected cells were successfully used to generate healthy double-knockout piglets by SCNT

    Eliminating Xenoantigen Expression on Swine RBC

    No full text
    Background. The rapidly improving tools of genetic engineering may make it possible to overcome the humoral immune barrier that prevents xenotransplantation. We hypothesize that levels of human antibody binding to donor tissues from swine must approximate the antibody binding occurring in allotransplantation. It is uncertain if this is an attainable goal. Here we perform an initial analysis of this issue by comparing human antibody binding to red blood cells (RBC) isolated from knockout swine and to allogeneic or autologous human RBC. Methods. Human sera were incubated with RBC isolated from various genetically engineered swine or from humans. The level of IgG and IgM binding to these cells were compared using either flow cytometry or a novel mass spectrometric assay. Results. Mass spectroscopic quantitation of human antibody binding demonstrated that as few as 3 gene inactivations can reduce the levels human antibody binding to swine RBC that is as low as autologous human RBC. Flow cytometry showed that RBC from 2-gene knockout swine exhibited less human antibody binding than human blood group O allogeneic RBC in 22% of tested sera. Deletion of a third gene from pigs resulted in 30% of human samples having less IgG and IgM RBC xenoreactivity than alloreactivity. Conclusions. Xenoantigenicity of swine RBC can be eliminated via gene disruption. These results suggest that the gene knockout approach may be able reduce antigenicity in other pig tissues to levels that enable the xenotransplantation humoral barrier to be overcome

    Gene Targeting and Cloning in Pigs Using Fetal Liver Derived Cells

    No full text
    Background. Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. Materials and Methods. FLDC were isolated and processed using a human liver stem cell protocol. Single copy alpha-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used insomatic cell nuclear transfer (SCNT) to create GTKO pigs. Results. FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. Conclusions. FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig. (c) 2011 Elsevier Inc. All rights reserved

    Primary Porcine Kupffer Cell Phagocytosis of Human Platelets Involves the CD18 Receptor

    No full text
    Background. Hepatic failure has been treated successfully with clinical extracorporeal perfusions of porcine livers. However, dog-to-pig and pig-to-baboon liver xenotransplant models have resulted in severe bleeding secondary to liver xenograft-induced thrombocytopenia. Kupffer cells (KC) are abundant phagocytic cells in the liver. KC express the CD11b/CD18 receptor, which has been implicated in chilled platelet binding and phagocytosis through interaction with platelet surface proteins and carbohydrates. We sought to identify the role of KC CD18 in liver xenograft-induced thrombocytopenia. Methods. Primary pig KC were characterized by flow cytometry, immunoblots, and quantitative polymerase chain reaction. Pig KC were used in inhibition assays with fluorescently labeled human platelets. The CD18 receptor was targeted for siRNA knockdown. Results. Domestic and alpha 1,3-galactosyltransferase double knockout porcine KC cultures were approximately 92% positive for CD18 as detected by quantitative polymerase chain reaction and flow cytometry. Use of CD18 blocking antibodies resulted in reduction of human platelet binding and phagocytosis. Additionally, asialofetuin, not fetuin, inhibited platelet phagocytosis suggesting the involvement of an oligosaccharide-binding site. Furthermore, reduced CD18 expression by siRNA resulted in decreased human platelet binding. Conclusions. Our data suggest that primary pig KC bind and phagocytose human platelets with involvement of CD18. Further understanding and modification of CD18 expression in pigs may result in a liver xenograft with reduced thrombocytopenic effects, which could be used as a bridge to allogeneic liver transplantation
    corecore