47 research outputs found

    Deficits in Auditory Rhythm Perception in Children With Auditory Processing Disorder Are Unrelated to Attention

    Get PDF
    Auditory processing disorder (APD) is defined as a specific deficit in the processing of auditory information along the central auditory nervous system, including bottom-up and top-down neural connectivity. Even though music comprises a big part of audition, testing music perception in APD population has not yet gained wide attention in research. This work tests the hypothesis that deficits in rhythm perception occur in a group of subjects with APD. The primary focus of this study is to measure perception of a simple auditory rhythm, i.e., short isochronous sequences of beats, in APD children and to compare their performance to age-matched normal controls. The secondary question is to study the relationship between cognition and auditory processing of rhythm perception. We tested 39 APD children and 25 control children aged between 6 and 12 years via (a) clinical APD tests, including a monaural speech in noise test, (b) isochrony task, a test measuring the detection of small deviations from perfect isochrony in a isochronous beats sequence, and (c) two cognitive tests (auditory memory and auditory attention). APD children scored worse in isochrony task compared to the age-matched control group. In the APD group, neither measure of cognition (attention nor memory) correlated with performance in isochrony task. Left (but not right) speech in noise performance correlated with performance in isochrony task. In the control group a large correlation (r = −0.701, p = 0.001) was observed between isochrony task and attention, but not with memory. The results demonstrate a deficit in the perception of regularly timed sequences in APD that is relevant to the perception of speech in noise, a ubiquitous complaint in this condition. Our results suggest (a) the existence of a non-attention related rhythm perception deficit in APD children and (b) differential effects of attention on task performance in normal vs. APD children. The potential beneficial use of music/rhythm training for rehabilitation purposes in APD children would need to be explored

    SOIL QUALITY IN RELATION TO FOREST CONVERSION TO PERENNIAL OR ANNUAL CROPPING IN SOUTHERN BRAZIL

    Get PDF
    Many forested areas have been converted to intensive agricultural use to satisfy food, fiber, and forage production for a growing world population. There is great interest in evaluating forest conversion to cultivated land because this conversion adversely affects several soil properties. We examined soil microbial, physical, and chemical properties in an Oxisol (Latossolo Vermelho distrófico) of southern Brazil 24 years after forest conversion to a perennial crop with coffee or annual grain crops (maize and soybeans) in conventional tillage or no-tillage. One goal was to determine which soil quality parameters seemed most sensitive to change. A second goal was to test the hypothesis that no-tillage optimized preservation of soil quality indicators in annual cropping systems on converted land. Land use significantly affected microbial biomass and its activity, C and N mineralization, and aggregate stability by depth. Cultivated sites had lower microbial biomass and mineralizable C and N than a forest used as control. The forest and no-tillage sites had higher microbial biomass and mineralizable C and N than the conventional tillage site, and the metabolic quotient was 65 and 43 % lower, respectively. Multivariate analysis of soil microbial properties showed a clear separation among treatments, displaying a gradient from conventional tillage to forest. Although the soil at the coffee site was less disturbed and had a high organic C content, the microbial activity was low, probably due to greater soil acidity and Al toxicity. Under annual cropping, microbial activity in no-tillage was double that of the conventional tillage management. The greater microbial activity in forest and no-tillage sites may be attributed, at least partially, to lower soil disturbance. Reducing soil disturbance is important for soil C sequestration and microbial activity, although control of soil pH and Al toxicity are also essential to maintain the soil microbial activity high
    corecore