5 research outputs found

    A Clinical Decision Support System for Malignant Pleural Effusion Analysis

    Get PDF
    Pleural effusion occurs when fluid accumulates in the pleural cavity surrounding the lung. This condition is commonly caused by infection, but can also be associated with the presence of a metastatic tumor. Samples of pleural fluid are used to analyze the morphologies of mesothelial cells and can typically be used to make a diagnosis between benignity and malignancy. Atypical pleural effusion samples are not easily identified as benign or malignant due to a lack of differentiable visual features, and such a problem has a significant influence in clinicians\u27 decision making. In this paper, the goal is to develop a clinical decision support system (CDSS) using computer imaging and machine learning techniques for diagnosing atypical pleural effusion. The proposed approach involves four steps for analyzing slides of pleural effusion samples: image processing, feature measurement, feature selection, and classification. Processing and measurement of images produced a preliminary data set of 500 samples; each is described by 398 features. A genetic algorithm was applied for feature selection and identified a subset of 39 important features. The experimental results showed that the selected features can distinguish atypical nuclei as benign or malignant with a five-fold cross validation accuracy of 91%

    Morphologic Features of ALK-negative Anaplastic Large Cell Lymphomas With DUSP22 Rearrangements.

    Get PDF
    Systemic anaplastic large cell lymphomas (ALCLs) are classified into ALK-positive and ALK-negative types. We recently reported that ALK-negative ALCLs are genetically heterogenous. The largest subset, representing 30% of cases, had rearrangements of the DUSP22 locus. These cases had favorable outcomes similar to ALK-positive ALCL, and superior to other ALK-negative ALCLs. Here, we examined the morphologic features of these cases in more detail. First, we conducted blinded review of hematoxylin and eosin slides of 108 ALCLs from our previous study, scoring cases for the presence of 3 histologic patterns and 5 cell types. Cases then were unblinded and re-reviewed to understand these features further. DUSP22-rearranged ALCLs were more likely than other ALK-negative ALCLs to have so-called doughnut cells (23% vs. 5%; P=0.039), less likely to have pleomorphic cells (23% vs. 49%; P=0.042), and nearly always (95%) had areas with sheet-like growth (common pattern). To examine the reproducibility of these findings, we conducted blinded review of hematoxylin and eosin slides of 46 additional ALK-negative ALCLs using a 0 to 3 scoring system to predict likelihood of DUSP22 rearrangement, the results of which correlated strongly with subsequent findings by fluorescence in situ hybridization (P<0.0001). Although all ALCLs share certain morphologic features, ALCLs with DUSP22 rearrangements show significant differences from other ALK-negative ALCLs, typically showing sheets of hallmark cells with doughnut cells and few large pleomorphic cells. These morphologic findings and our previous outcome data suggest that ALK-positive ALCLs and DUSP22-rearranged ALCLs represent prototypical ALCLs, whereas ALCLs lacking rearrangements of both DUSP22 and ALK require further study

    Molecular profiling reveals a hypoxia signature in breast implant-associated anaplastic large cell lymphoma

    No full text
    Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a recently characterized T-cell malignancy that has raised significant patient safety concerns and led to worldwide impact on the implants used and clinical management of patients undergoing reconstructive or cosmetic breast surgery. Molecular signatures distinguishing BIA-ALCL from other ALCLs have not been fully elucidated and classification of BIA-ALCL as a WHO entity remains provisional. We performed RNA sequencing and gene set enrichment analysis comparing BIA-ALCLs to non-BIA-ALCLs and identified dramatic upregulation of hypoxia signaling genes including the hypoxia-associated biomarker CA9 (carbonic anyhydrase-9). Immunohistochemistry validated CA9 expression in all BIA-ALCLs, with only minimal expression in non-BIA-ALCLs. Growth induction in BIA-ALCL-derived cell lines cultured under hypoxic conditions was proportional to up-regulation of CA9 expression, and RNA sequencing demonstrated induction of the same gene signature observed in BIA-ALCL tissue samples compared to non-BIA-ALCLs. CA9 silencing blocked hypoxia-induced BIA-ALCL cell growth and cell cycle-associated gene expression, whereas CA9 overexpression in BIA-ALCL cells promoted growth in a xenograft mouse model. Furthermore, CA9 was secreted into BIA-ALCL cell line supernatants and was markedly elevated in human BIA-ALCL seroma samples. Finally, serum CA9 concentrations in mice bearing BIA-ALCL xenografts were significantly elevated compared to control serum. Together, these findings characterize BIA-ALCL as a hypoxia-associated neoplasm, likely attributable to the unique microenvironment in which it arises. These data support classification of BIA-ALCL as a distinct entity and uncover opportunities for investigating hypoxia-related proteins such as CA9 as novel biomarkers and therapeutic targets in this disease
    corecore