647 research outputs found

    Unsteady effects of a control surface in two dimensional subsonic and transonic flow

    Get PDF
    The experimental results of steady and unsteady pressure measurements, carried out in subsonic and transonic flow on a 16 percent relative thickness supercritical aerofoil, equipped with a trailing edge flap involving 25 percent of the chord, in a sinusoidal motion are given. These experimental results are compared with those obtained by various methods of steady and unsteady inviscid flow calculations. Some calculation results in which viscous effects have been taken into account, for both steady and unsteady flows, are also presented

    Introducing Variable Cell Shape Methods in Field Theory Simulations of Polymers

    Full text link
    We propose a new method for carrying out field-theoretic simulations of polymer systems under conditions of prescribed external stress, allowing for shape changes in the simulation box. A compact expression for the deviatoric stress tensor is derived in terms of the chain propagator, and is used to monitor changes in the box shape according to a simple relaxation scheme. The method allows fully relaxed, stress free configurations to be obtained even in non trivial morphologies, and enables the study of morphology transitions induced by external stresses

    Kinetic Ising model in an oscillating field: Finite-size scaling at the dynamic phase transition

    Full text link
    We study hysteresis for a two-dimensional, spin-1/2, nearest-neighbor, kinetic Ising ferromagnet in an oscillating field, using Monte Carlo simulations. The period-averaged magnetization is the order parameter for a proposed dynamic phase transition (DPT). To quantify the nature of this transition, we present the first finite-size scaling study of the DPT for this model. Evidence of a diverging correlation length is given, and we provide estimates of the transition frequency and the critical indices β\beta, γ\gamma and ν\nu.Comment: Accepted by Physical Review Letters. 9 page

    Troubles with Bayesianism: An introduction to the psychological immune system

    Get PDF
    A Bayesian mind is, at its core, a rational mind. Bayesianism is thus well-suited to predict and explain mental processes that best exemplify our ability to be rational. However, evidence from belief acquisition and change appears to show that we do not acquire and update information in a Bayesian way. Instead, the principles of belief acquisition and updating seem grounded in maintaining a psychological immune system rather than in approximating a Bayesian processor

    Spatial stochastic resonance in 1D Ising systems

    Full text link
    The 1D Ising model is analytically studied in a spatially periodic and oscillatory external magnetic field using the transfer-matrix method. For low enough magnetic field intensities the correlation between the external magnetic field and the response in magnetization presents a maximum for a given temperature. The phenomenon can be interpreted as a resonance phenomenon induced by the stochastic heatbath. This novel "spatial stochastic resonance" has a different origin from the classical stochastic resonance phenomenon.Comment: REVTex, 5 pages, 3 figure

    Nonequilibrium phase transition in the kinetic Ising model: Is transition point the maximum lossy point ?

    Full text link
    The nonequilibrium dynamic phase transition, in the kinetic Ising model in presence of an oscillating magnetic field, has been studied both by Monte Carlo simulation (in two dimension) and by solving the meanfield dynamical equation of motion for the average magnetization. The temperature variations of hysteretic loss (loop area) and the dynamic correlation have been studied near the transition point. The transition point has been identified as the minimum-correlation point. The hysteretic loss becomes maximum above the transition point. An analytical formulation has been developed to analyse the simulation results. A general relationship among hysteresis loop area, dynamic order parameter and dynamic correlation has also been developed.Comment: 8 pages Revtex and 4 Postscript figures; To appear in Phys. Rev.

    Hysteresis and the dynamic phase transition in thin ferromagnetic films

    Full text link
    Hysteresis and the non-equilibrium dynamic phase transition in thin magnetic films subject to an oscillatory external field have been studied by Monte Carlo simulation. The model under investigation is a classical Heisenberg spin system with a bilinear exchange anisotropy in a planar thin film geometry with competing surface fields. The film exhibits a non-equilibrium phase transition between dynamically ordered and dynamically disordered phases characterized by a critical temperature Tcd, whose location of is determined by the amplitude H0 and frequency w of the applied oscillatory field. In the presence of competing surface fields the critical temperature of the ferromagnetic-paramagnetic transition for the film is suppressed from the bulk system value, Tc, to the interface localization-delocalization temperature Tci. The simulations show that in general Tcd < Tci for the model film. The profile of the time-dependent layer magnetization across the film shows that the dynamically ordered and dynamically disordered phases coexist within the film for T < Tcd. In the presence of competing surface fields, the dynamically ordered phase is localized at one surface of the film.Comment: PDF file, 21 pages including 8 figure pages; added references,typos added; to be published in PR

    Magnetic Domain Patterns Depending on the Sweeping Rate of Magnetic Fields

    Full text link
    The domain patterns in a thin ferromagnetic film are investigated in both experiments and numerical simulations. Magnetic domain patterns under a zero field are usually observed after an external magnetic field is removed. It is demonstrated that the characteristics of the domain patterns depend on the decreasing rate of the external field, although it can also depend on other factors. Our numerical simulations and experiments show the following properties of domain patterns: a sea-island structure appears when the field decreases rapidly from the saturating field to the zero field, while a labyrinth structure is observed for a slowly decreasing field. The mechanism of the dependence on the field sweeping rate is discussed in terms of the concepts of crystallization.Comment: 4 pages, 3 figure
    corecore