166 research outputs found
EFFECTS OF ANKLE STABILlZATION ON PUSH-OFF MECHANICS FROM A THREE-POINT STANCE IN FOOTBALL
The purpose of this investigation was to examine the effects of taping and bracing on push-off mechanics from a three-point football stance. Nineteen males were tested under three ankle stabilization conditions: braced, taped, and control. Participants performed five trials in each condition. Two 250Hz video cameras and a forceplate were used to collect data. A MANOVA with repeated measures revealed a significant main effect for condition. Post hoc analysis indicated that bracing and taping resulted in reduced minimum and maximum ankle angles and maximum angular velocity compared to the control. The horizontal velocity of the center of mass at takeofffor the tape condition was significantly lower than the control. Bracing and taping can have a negative effect on push-off mechanics
Litter identity affects assimilation of carbon and nitrogen by a shredding caddisfly
Ecologists often equate litter quality with decomposition rate. In soil and sediments, litter that is rapidly decomposed by microbes often has low concentrations of tannin and lignin and low C:N ratios. Do these same traits also favor element transfer to higher trophic levels in streams, where many insects depend on litter as their primary food source? We test the hypothesis that slow decomposition rates promote element transfer from litter to insects, whereas rapid decomposition favors microbes. We measured carbon and nitrogen fluxes from four plant species to a leaf-shredding caddisfly using isotopically labeled litter. Caddisflies assimilated a higher percentage of litter carbon and nitrogen lost from slowly decomposing litters (Platanus wrightii and Quercus gambelii). In contrast, rapidly decomposing litters (Fraxinus velutina and Populus fremontii) supported higher microbial biomass. These results challenge the view that rapidly decomposing litter is higher quality by demonstrating that slowly decomposing litters provide a critical resource for insects
Probing impulsive strain propagation with x-ray pulses
Pump-probe time-resolved x-ray diffraction of allowed and nearly forbidden
reflections in InSb is used to follow the propagation of a coherent acoustic
pulse generated by ultrafast laser-excitation. The surface and bulk components
of the strain could be simultaneously measured due to the large x-ray
penetration depth. Comparison of the experimental data with dynamical
diffraction simulations suggests that the conventional model for impulsively
generated strain underestimates the partitioning of energy into coherent modes.Comment: 4 pages, 2 figures, LaTeX, eps. Accepted for publication in Phys.
Rev. Lett. http://prl.aps.or
Recommended from our members
Scaling to Ultra-High Intensities by High-Energy Petawatt Beam Combining
The output pulse energy from a single-aperture high-energy laser amplifier (e.g. fusion lasers such as NIF and LMJ) are critically limited by a number of factors including optical damage, which places an upper bound on the operating fluence; parasitic gain, which limits together with manufacturing costs the maximum aperture size to {approx} 40-cm; and non-linear phase effects which limits the peak intensity. For 20-ns narrow band pulses down to transform-limited sub-picosecond pulses, these limiters combine to yield 10-kJ to 1-kJ maximum pulse energies with up to petawatt peak power. For example, the Advanced Radiographic Capability (ARC) project at NIF is designed to provide kilo-Joule pulses from 0.75-ps to 50-ps, with peak focused intensity above 10{sup 19} W/cm{sup 2}. Using such a high-energy petawatt (HEPW) beamline as a modular unit, they discuss large-scale architectures for coherently combining multiple HEPW pulses from independent apertures, called CAPE (Coherent Addition of Pulses for Energy), to significantly increase the peak achievable focused intensity. Importantly, the maximum intensity achievable with CAPE increases non-linearly. Clearly, the total integrated energy grows linearly with the number of apertures N used. However, as CAPE combines beams in the focal plane by increasing the angular convergence to focus (i.e. the f-number decreases), the foal spot diameter scales inversely with N. Hence the peak intensity scales as N{sup 2}. Using design estimates for the focal spot size and output pulse energy (limited by damage fluence on the final compressor gratings) versus compressed pulse duration in the ARC system, Figure 2 shows the scaled focal spot intensity and total energy for various CAPE configurations from 1,2,4, ..., up to 192 total beams. They see from the fixture that the peak intensity for event modest 8 to 16 beam combinations reaches the 10{sup 21} to 10{sup 22} W/cm{sup 2} regime. With greater number of apertures, or with improvements to the focusability of the individual beams, the maximum peak intensity can be increased further to {approx} 10{sup 24} W/cm{sup 2}. Lastly, an important feature of the CAPE architecture is the ability to coherently combine beams to produce complex spatio-temporal intensity distributions for laser-based accelerators (e.g. all-optical electron injection and acceleration) and high energy density science applications such as fast ignition
Recommended from our members
Laser wakefield excitation and measurement by femtosecond longitudinal interferometry
Plasma density oscillations (Langmuir waves) in the wake of an intense (I{sub peak} {approximately} 3 {times} 10{sup 17}W/cm{sup 2}) laser pulse (100 fs) are measured with ultrafast time resolution using a longitudinal interferometric technique. Phase shifts consistent with large amplitude ({delta}n{sub e}/n{sub e} {approximately} 1) density waves at the electron plasma frequency were observed in a fully tunnel-ionized He plasma, corresponding to longitudinal electric fields of {approximately} 10 GV/m. Strong radial ponderomotive forces enhance the density oscillations. As this technique utilizes a necessary component of any laser-based plasma accelerator, it promises to be a powerful tool for on-line monitoring and control of future plasma-based particle accelerators
Power scaling analysis of fiber lasers and amplifiers based on non-silica materials
A developed formalism for analyzing the power scaling of diffraction limited fiber lasers and amplifiers is applied to a wider range of materials. Limits considered include thermal rupture, thermal lensing, melting of the core, stimulated Raman scattering, stimulated Brillouin scattering, optical damage, bend induced limits on core diameter and limits to coupling of pump diode light into the fiber. For conventional fiber lasers based upon silica, the single aperture, diffraction limited power limit was found to be 36.6kW. This is a hard upper limit that results from an interaction of the stimulated Raman scattering with thermal lensing. This result is dependent only upon physical constants of the material and is independent of the core diameter or fiber length. Other materials will have different results both in terms of ultimate power out and which of the many limits is the determining factor in the results. Materials considered include silica doped with Tm and Er, YAG and YAG based ceramics and Yb doped phosphate glass. Pros and cons of the various materials and their current state of development will be assessed. In particular the impact of excess background loss on laser efficiency is discussed
Recommended from our members
Fiber laser front end for high energy petawatt laser systems
We are developing a fiber laser front end suitable for high energy petawatt laser systems on large glass lasers such as NIF. The front end includes generation of the pulses in a fiber mode-locked oscillator, amplification and pulse cleaning, stretching of the pulses to >3ns, dispersion trimming, timing, fiber transport of the pulses to the main laser bay and amplification of the pulses to an injection energy of 150 {micro}J. We will discuss current status of our work including data from packaged components. Design detail such as how the system addresses pulse contrast, dispersion trimming and pulse width adjustment and impact of B-integral on the pulse amplification will be discussed. A schematic of the fiber laser system we are constructing is shown in figure 1 below. A 40MHz packaged mode-locked fiber oscillator produces {approx}1nJ pulses which are phase locked to a 10MHz reference clock. These pulses are down selected to 100kHz and then amplified while still compressed. The amplified compressed pulses are sent through a non-linear polarization rotation based pulse cleaner to remove background amplified spontaneous emission (ASE). The pulses are then stretched by a chirped fiber Bragg grating (CFBG) and then sent through a splitter. The splitter splits the signal into two beams. (From this point we follow only one beam as the other follows an identical path.) The pulses are sent through a pulse tweaker that trims dispersion imbalances between the final large optics compressor and the CFBG. The pulse tweaker also permits the dispersion of the system to be adjusted for the purpose of controlling the final pulse width. Fine scale timing between the two beam lines can also be adjusted in the tweaker. A large mode area photonic crystal single polarization fiber is used to transport the pulses from the master oscillator room to the main laser bay. The pulses are then amplified a two stage fiber amplifier to 150mJ. These pulses are then launched into the main amplifier chain. We are currently constructing a packaged prototype of this system, which will ultimately be deployed on the National Ignition Facility (NIF). In our talk we will discuss the packaged components as well as the numerous technical challenges that needed to be overcome in order to make this system possible. Of particular interest was the quality of recompressed pulses that could be achieved with a CFBG. We will show background free auto-correlation data from pulses with a dynamic range noise limited to six orders of magnitude that were stretched with a CFBG and then recompressed in a standard compressor (figure 2). We will also discuss in detail the impact of B-integral accumulation on the recompressed pulses. Our current system is projected to run at an accumulated B-integral of 7. However, because our injected system bandwidth is much wider than the NIF system bandwidth our system can tolerate this high B-integral
COMMISSIONING OF A HIGH-BRIGHTNESS PHOTOINJECTOR FOR COMPTON SCATTERING X-RAY SOURCES
Compton scattering of intense laser pulses with ultrarelativistic electron beams has proven to be an attractive source of high-brightness x-rays with keV to MeV energies. This type of x-ray source requires the electron beam brightness to be comparable with that used in x-ray free-electron lasers and laser and plasma based advanced accelerators. We describe the development and commissioning of a 1.6 cell RF photoinjector for use in Compton scattering experiments at LLNL. Injector development issues such as RF cavity design, beam dynamics simulations, emittance diagnostic development, results of sputtered magnesium photo-cathode experiments, and UV laser pulse shaping are discussed. Initial operation of the photoinjector is described
GAMMA-RAY COMPTON LIGHT SOURCE DEVELOPMENT AT LLNL
A new class of tunable, monochromatic {gamma}-ray sources capable of operating at high peak and average brightness is currently being developed at LLNL for nuclear photoscience and applications. These novel systems are based on Compton scattering of laser photons by a high brightness relativistic electron beam produced by an rf photoinjector. A prototype, capable of producing > 10{sup 8} 0.7 MeV photons in a single shot, with a fractional bandwidth of 1%, and a repetition rate of 10 Hz, is currently under construction at LLNL; this system will be used to perform nuclear resonance fluorescence experiments. A new symmetrized S-band rf gun, using a Mg photocathode, will produce up to 1 nC of charge in an 8 ps bunch, with a normalized emittance modeled at 0.8 mm.mrad; electrons are subsequently accelerated up to 120 MeV to interact with a 500 mJ, 10 ps, 355 nm laser pulse and generate {gamma}-rays. The laser front end is a fiber-based system, using corrugated-fiber Bragg gratings for stretching, and drives both the frequency-quadrupled photocathode illumination laser and the Nd:YAG interaction laser. Two new technologies are used in the laser: a hyper-Michelson temporal pulse stacker capable of producing 8 ps square UV pulses, and a hyper-dispersion compressor for the interaction laser. Other key technologies, basic scaling laws, and recent experimental results will also be presented, along with an overview of future research and development directions
Recommended from our members
Optimal Design of a Tunable Thomson-Scattering Based Gamma-Ray Source
Thomson-Scattering based systems offer a path to high-brightness high-energy (> 1 MeV) x-ray and {gamma}-ray sources due to their favorable scaling with electron energy. LLNL is currently engaged in an effort to optimize such a device, dubbed the ''Thomson-Radiated Extreme X-Ray'' (T-REX) source, targeting up to 680 keV photon energy. Such a system requires precise design of the interaction between a high-intensity laser pulse and a high-brightness electron beam. Presented here are the optimal design parameters for such an interaction, including factors such as the collision angle, focal spot size, optimal bunch charge, and laser energy. These parameters were chosen based on extensive modeling using PARMELA and in-house, well-benchmarked scattering simulation codes
- …