10 research outputs found
SARS-CoV-2 antibodies protect against reinfection for at least 6 months in a multicentre seroepidemiological workplace cohort
dentifying the potential for SARS-CoV-2 reinfection is crucial for understanding possible long-term epidemic dynamics. We analysed longitudinal PCR and serological testing data from a prospective cohort of 4,411 United States employees in 4 states between April 2020 and February 2021. We conducted a multivariable logistic regression investigating the association between baseline serological status and subsequent PCR test result in order to calculate an odds ratio for reinfection. We estimated an odds ratio for reinfection ranging from 0.14 (95% CI: 0.019 to 0.63) to 0.28 (95% CI: 0.05 to 1.1), implying that the presence of SARS-CoV-2 antibodies at baseline is associated with around 72% to 86% reduced odds of a subsequent PCR positive test based on our point estimates. This suggests that primary infection with SARS-CoV-2 provides protection against reinfection in the majority of individuals, at least over a 6-month time period. We also highlight 2 major sources of bias and uncertainty to be considered when estimating the relative risk of reinfection, confounders and the choice of baseline time point, and show how to account for both in reinfection analysis.The authors received funding from the following sources: EF was funded by the Medical Research Council (MR/N013638/1); AJK was supported by Wellcome Trust (206250/Z/17/Z) and National Institute for Health Research (NIHR200908); RL was funded by a Royal Society Dorothy Hodgkin Fellowship (https://royalsociety.org). EN was supported by the US Centers for Disease Control and Prevention (U01 U01GH002238). AM was supported by the Translational Research Institute for Space Health through NASA Cooperative Agreement (https://www.nasa.gov/hrp/tri; NNX16AO69A). GA was supported by the Massachusetts Consortium on Pathogen Readiness (https://masscpr.hms.harvard.edu/; MassCPR), the National Institutes of Health (3R37AI080289-11S1, R01AI146785, U19AI42790-01, U19AI135995-02, 1U01CA260476-01) and the Musk Foundation (http://www.muskfoundation.org/). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript."Article signat per 18 autors/es: Emilie Finch ,Rachel Lowe,Stephanie Fischinger,Michael de St Aubin,Sameed M. Siddiqui,Diana Dayal,Michael A. Loesche,Justin Rhee,Samuel Beger,Yiyuan Hu,Matthew J. Gluck,Benjamin Mormann,Mohammad A. Hasdianda,Elon R. Musk,Galit Alter,Anil S. Menon ,Eric J. Nilles ,Adam J. Kucharski ,on behalf of the CMMID COVID-19 working group and the SpaceX COVID-19 Cohort Collaborative"Postprint (author's final draft
Epidemiological and Immunological Features of Obesity and SARS-CoV-2
Obesity is a key correlate of severe SARS-CoV-2 outcomes while the role of obesity on risk of SARS-CoV-2 infection, symptom phenotype, and immune response remain poorly defined. We examined data from a prospective SARS-CoV-2 cohort study to address these questions. Serostatus, body mass index, demographics, comorbidities, and prior COVID-19 compatible symptoms were assessed at baseline and serostatus and symptoms monthly thereafter. SARS-CoV-2 immunoassays included an IgG ELISA targeting the spike RBD, multiarray Luminex targeting 20 viral antigens, pseudovirus neutralization, and T cell ELISPOT assays. Our results from a large prospective SARS-CoV-2 cohort study indicate symptom phenotype is strongly influenced by obesity among younger but not older age groups; we did not identify evidence to suggest obese individuals are at higher risk of SARS-CoV-2 infection; and remarkably homogenous immune activity across BMI categories suggests immune protection across these groups may be similar
SARS-CoV-2 antibodies protect against reinfection for at least 6 months in a multicentre seroepidemiological workplace cohort
Identifying the potential for Severe Acute Respiratory Syndrome : Coronavirus 2 (SARS-CoV-2) reinfection is crucial for understanding possible long-term epidemic dynamics. We analysed longitudinal PCR and serological testing data from a prospective cohort of 4,411 United States employees in 4 states between April 2020 and February 2021. We conducted a multivariable logistic regression investigating the association between baseline serological status and subsequent PCR test result in order to calculate an odds ratio for reinfection. We estimated an odds ratio for reinfection ranging from 0.14 (95% CI: 0.019 to 0.63) to 0.28 (95% CI: 0.05 to 1.1), implying that the presence of SARS-CoV-2 antibodies at baseline is associated with around 72% to 86% reduced odds of a subsequent PCR positive test based on our point estimates. This suggests that primary infection with SARS-CoV-2 provides protection against reinfection in the majority of individuals, at least over a 6-month time period. We also highlight 2 major sources of bias and uncertainty to be considered when estimating the relative risk of reinfection, confounders, and the choice of baseline time point and show how to account for both in reinfection analysis
Bevacizumab combined with platinum-based chemotherapy in primary or relapsed ovarian cancer patients: Meta-analysis and literature to review
Introduction: Earlier, patients with advanced ovarian cancer were treated with a combination of cytoreductive surgery and platinum-based chemotherapy, which had significant outcomes in the past until an increase in relapse and resistance to treatment, which led to the use or development of bevacizumab (a vascular endothelial growth factor inhibitor) in the treatment of primary or relapsed ovarian cancer. Method and Methodology: This study includes five-phase three randomized controlled clinical trials designed to study the impact of bevacizumab in combination with platinum-based chemotherapy compared with platinum-based chemotherapy alone. Results: This study demonstrated significant improvement in the progression-free span but no improvement in overall survival in the treatment group when compared with the control group. Also, adverse effects reported with combination therapy were tolerable and easily manageable by decreasing the infusion rate or by decreasing the frequency of infusion
Theta Oscillations in the Human Medial Temporal Lobe during Real-World Ambulatory Movement
The theta rhythm-a slow (6-12 Hz) oscillatory component of the local field potential-plays a critical role in spatial navigation and memory by coordinating the activity of neuronal ensembles within the medial temporal lobe (MTL). Although theta has been extensively studied in freely moving rodents, its presence in humans has been elusive and primarily investigated in stationary subjects. Here we used a unique clinical opportunity to examine theta within the human MTL during untethered, real-world ambulatory movement. We recorded intracranial electroencephalographic activity from participants chronically implanted with the wireless NeuroPace responsive neurostimulator (RNS) and tracked their motion with sub-millimeter precision. Our data revealed that movement-related theta oscillations indeed exist in humans, such that theta power is significantly higher during movement than immobility. Unlike in rodents, however, theta occurs in short bouts, with average durations of âŒ400 ms, which are more prevalent during fast versus slow movements. In a rare opportunity to study a congenitally blind participant, we found that both the prevalence and duration of theta bouts were increased relative to the sighted participants. These results provide critical support for conserved neurobiological characteristics of theta oscillations during ambulatory spatial navigation, while highlighting some fundamental differences across species in these oscillations between humans and rodents
Epidemiological and Immunological Features of Obesity and SARS-CoV-2
Obesity is a key correlate of severe SARS-CoV-2 outcomes while the role of obesity on risk of SARS-CoV-2 infection, symptom phenotype, and immune response remain poorly defined. We examined data from a prospective SARS-CoV-2 cohort study to address these questions. Serostatus, body mass index, demographics, comorbidities, and prior COVID-19 compatible symptoms were assessed at baseline and serostatus and symptoms monthly thereafter. SARS-CoV-2 immunoassays included an IgG ELISA targeting the spike RBD, multiarray Luminex targeting 20 viral antigens, pseudovirus neutralization, and T cell ELISPOT assays. Our results from a large prospective SARS-CoV-2 cohort study indicate symptom phenotype is strongly influenced by obesity among younger but not older age groups; we did not identify evidence to suggest obese individuals are at higher risk of SARS-CoV-2 infection; and remarkably homogenous immune activity across BMI categories suggests immune protection across these groups may be similar
SARS-CoV-2 antibodies protect against reinfection for at least 6 months in a multicentre seroepidemiological workplace cohort.
Identifying the potential for SARS-CoV-2 reinfection is crucial for understanding possible long-term epidemic dynamics. We analysed longitudinal PCR and serological testing data from a prospective cohort of 4,411 United States employees in 4 states between April 2020 and February 2021. We conducted a multivariable logistic regression investigating the association between baseline serological status and subsequent PCR test result in order to calculate an odds ratio for reinfection. We estimated an odds ratio for reinfection ranging from 0.14 (95% CI: 0.019 to 0.63) to 0.28 (95% CI: 0.05 to 1.1), implying that the presence of SARS-CoV-2 antibodies at baseline is associated with around 72% to 86% reduced odds of a subsequent PCR positive test based on our point estimates. This suggests that primary infection with SARS-CoV-2 provides protection against reinfection in the majority of individuals, at least over a 6-month time period. We also highlight 2 major sources of bias and uncertainty to be considered when estimating the relative risk of reinfection, confounders and the choice of baseline time point, and show how to account for both in reinfection analysis
Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2
The COVID-19 pandemic has highlighted that new diagnostic technologies are essential for controlling disease transmission. Here, we develop SHINE (Streamlined Highlighting of Infections to Navigate Epidemics), a sensitive and specific diagnostic tool that can detect SARS-CoV-2 RNA from unextracted samples. We identify the optimal conditions to allow RPA-based amplification and Cas13-based detection to occur in a single step, simplifying assay preparation and reducing run-time. We improve HUDSON to rapidly inactivate viruses in nasopharyngeal swabs and saliva in 10 min. SHINEâs results can be visualized with an in-tube fluorescent readout â reducing contamination risk as amplification reaction tubes remain sealed â and interpreted by a companion smartphone application. We validate SHINE on 50 nasopharyngeal patient samples, demonstrating 90% sensitivity and 100% specificity compared to RT-qPCR with a sample-to-answer time of 50 min. SHINE has the potential to be used outside of hospitals and clinical laboratories, greatly enhancing diagnostic capabilities
Discrete SARS-CoV-2 antibody titers track with functional humoral stability
Antibodies serve as biomarkers of infection, but if sustained can confer long-term immunity. Yet, for most clinically approved vaccines, binding antibody titers only serve as a surrogate of protection. Instead, the ability of vaccine induced antibodies to neutralize or mediate Fc-effector functions is mechanistically linked to protection. While evidence has begun to point to persisting antibody responses among SARS-CoV-2 infected individuals, cases of re-infection have begun to emerge, calling the protective nature of humoral immunity against this highly infectious pathogen into question. Using a community-based surveillance study, we aimed to define the relationship between titers and functional antibody activity to SARS-CoV-2 over time. Here we report significant heterogeneity, but limited decay, across antibody titers amongst 120 identified seroconverters, most of whom had asymptomatic infection. Notably, neutralization, Fc-function, and SARS-CoV-2 specific T cell responses were only observed in subjects that elicited RBD-specific antibody titers above a threshold. The findings point to a switch-like relationship between observed antibody titer and function, where a distinct threshold of activityâdefined by the level of antibodiesâis required to elicit vigorous humoral and cellular response. This response activity level may be essential for durable protection, potentially explaining why re-infections occur with SARS-CoV-2 and other common coronaviruses.NIH (Grants 3R37AI080289-11S1, R01AI146785, U19AI42790-01, U19AI135995-02, U19AI42790-01, 1U01CA260476 â 01, CIVIC75N93019C00052)Gates Foundation (Grants OPP1146996 and INV-001650)NASA (Contract NNX16AO69A)National Institute for Allergy and Infectious Disease (Grant U19 AI135995
The Origins and Future of Sentinel: An Early-Warning System for Pandemic Preemption and Response
While investigating a signal of adaptive evolution in humans at the gene LARGE, we encountered an intriguing finding by Dr. Stefan Kunz that the gene plays a critical role in Lassa virus binding and entry. This led us to pursue field work to test our hypothesis that natural selection acting on LARGEâdetected in the Yoruba population of Nigeriaâconferred resistance to Lassa Fever in some West African populations. As we delved further, we conjectured that the âemergingâ nature of recently discovered diseases like Lassa fever is related to a newfound capacity for detection, rather than a novel viral presence, and that humans have in fact been exposed to the viruses that cause such diseases for much longer than previously suspected. Dr. Stefan Kunzâs critical efforts not only laid the groundwork for this discovery, but also inspired and catalyzed a series of events that birthed Sentinel, an ambitious and large-scale pandemic prevention effort in West Africa. Sentinel aims to detect and characterize deadly pathogens before they spread across the globe, through implementation of its three fundamental pillars: Detect, Connect, and Empower. More specifically, Sentinel is designed to detect known and novel infections rapidly, connect and share information in real time to identify emerging threats, and empower the public health community to improve pandemic preparedness and response anywhere in the world. We are proud to dedicate this work to Stefan Kunz, and eagerly invite new collaborators, experts, and others to join us in our efforts