15 research outputs found

    A genome-wide association study of myasthenia gravis

    Get PDF
    IMPORTANCE: Myasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood. OBJECTIVE: To identify genetic variants that alter susceptibility to myasthenia gravis, we performed a genome-wide association study. DESIGN, SETTING, AND PARTICIPANTS: DNA was obtained from 1032 white individuals from North America diagnosed as having acetylcholine receptor antibody–positive myasthenia gravis and 1998 race/ethnicity-matched control individuals from January 2010 to January 2011. These samples were genotyped on Illumina OmniExpress single-nucleotide polymorphism arrays. An independent cohort of 423 Italian cases and 467 Italian control individuals were used for replication. MAIN OUTCOMES AND MEASURES: We calculated P values for association between 8114394 genotyped and imputed variants across the genome and risk for developing myasthenia gravis using logistic regression modeling. A threshold P value of 5.0 × 10(−8) was set for genome-wide significance after Bonferroni correction for multiple testing. RESULTS: In the over all case-control cohort, we identified association signals at CTLA4 (rs231770; P = 3.98 × 10(−8); odds ratio, 1.37; 95% CI, 1.25–1.49), HLA-DQA1 (rs9271871; P = 1.08 × 10(−8); odds ratio, 2.31; 95% CI, 2.02 – 2.60), and TNFRSF11A (rs4263037; P = 1.60 × 10(−9); odds ratio, 1.41; 95% CI, 1.29–1.53). These findings replicated for CTLA4 and HLA-DQA1 in an independent cohort of Italian cases and control individuals. Further analysis revealed distinct, but overlapping, disease-associated loci for early- and late-onset forms of myasthenia gravis. In the late-onset cases, we identified 2 association peaks: one was located in TNFRSF11A (rs4263037; P = 1.32 × 10(−12); odds ratio, 1.56; 95% CI, 1.44–1.68) and the other was detected in the major histocompatibility complex on chromosome 6p21 (HLA-DQA1; rs9271871; P = 7.02 × 10(−18); odds ratio, 4.27; 95% CI, 3.92–4.62). Association within the major histocompatibility complex region was also observed in early-onset cases (HLA-DQA1; rs601006; P = 2.52 × 10(−11); odds ratio, 4.0; 95% CI, 3.57–4.43), although the set of single-nucleotide polymorphisms was different from that implicated among late-onset cases. CONCLUSIONS AND RELEVANCE: Our genetic data provide insights into aberrant cellular mechanisms responsible for this prototypical autoimmune disorder. They also suggest that clinical trials of immunomodulatory drugs related to CTLA4 and that are already Food and Drug Administration approved as therapies for other autoimmune diseases could be considered for patients with refractory disease

    Severe asthma associated with myasthenia gravis

    No full text
    Severe asthma constitutes a subgroup of approximately 10% of all asthma cases. Approximately one-half of these individuals have a refractory form of the disease in which atopy and T-helper cell 2-skewed immunological response may not be as closely linked to the disease as in other phenotypes of asthma. This suggests that not all asthma is explained by a T-helper cell 2-skewed immunological response, and that other immunological mechanisms may be important in this category of nonatopic asthma. The authors present a case involving a 55-year-old Caucasian man with nonatopic, adult-onset asthma, nonsteroidal anti-inflammatory drug sensitivity and idiopathic urticaria. This individual presented two years following his initial asthma diagnosis with diplopia and mild ptosis, and was subsequently diagnosed with seropositive myasthenia gravis

    Low Prevalence of Cardiomyopathy in Patients with Mitochondrial Disease and Neurological Manifestations

    No full text
    Patients with mitochondrial diseases can develop cardiomyopathy but with variable expressivity and penetrance. Our prospective study enrolled and evaluated a cohort of 53 patients diagnosed with chronic progressive ophthalmoplegia (CPEO, n = 34), Kearns–Sayre syndrome (KSS, n = 3), neuropathy ataxia and retinitis pigmentosa (NARP, n = 1), myoclonic epilepsy with ragged red fibers (MERRF, n = 1), Harel–Yoon Syndrome (HYS, n = 1) and 13 patients with undefined mitochondrial diseases, presenting primarily with neurological symptoms. Over a 4-year period, six patients in our study cohort were diagnosed with heart disease (11.3%), with only three patients having defined cardiomyopathy (5.7%). Cardiomyopathy was present in a 21-year-old patient with HYS and two CPEO patients having mild cardiomyopathy at an older age. Two CPEO patients had congenital heart disease, and a third CPEO had LV hypertrophy secondary to hypertension. In three patients, traditional risk factors for heart disease, including dyslipidemia, hypertension, and respiratory disease, were present. The majority of our adult cohort of patients have normal cardiac investigations with a median left ventricular (LV) ejection fraction of 59.0%, indexed LV mass of 67.0 g/m2, and normal diastolic and valvular function at baseline. A 12-lead electrocardiogram showed normal cardiac conduction across the study cohort. Importantly, follow-up assessments showed consistent cardiac structure and function. Our study shows a low prevalence of cardiomyopathy and highlights the breadth of phenotypic variability in patients with mitochondrial disorders. The presence of cardiovascular risk factors and aging are important comorbidities in our cohort

    Label-free proteomic analysis reveals large dynamic changes to the cellular proteome upon expression of the miRNA-23a-27a-24-2 microRNA cluster

    No full text
    In deciphering the regulatory networks of gene expression controlled by the small non-coding RNAs known as microRNAs (miRNAs), a major challenge has been with the identification of the true mRNA targets by these RNAs within the context of the enormous numbers of predicted targets for each of these small RNAs. To facilitate the system wide identification of miRNA targets a variety of system wide methods, such as proteomics, have been implemented. Here we describe the utilization of quantitative label-free proteomics and bioinformatics to identify the most significant changes to the proteome upon expression of the miR-23a-27a-24-2 miRNA cluster. In light of recent work leading to the hypothesis that only the most pronounced regulatory events by miRNAs may be physiologically relevant, our data reveals that label-free analysis circumvents the limitations of proteomic labeling techniques that limit the maximum differences that can be quantified. The result of our analysis identifies a series of novel candidate targets that are reduced in abundance by more than an order of magnitude upon the expression of the miR-23a-27a-24-2 cluster.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Patient preference for virtual versus in-person visits in neuromuscular clinical practice.

    No full text
    Introduction/aimsIt is unknown if patients with neuromuscular diseases prefer in-person or virtual telemedicine visits. We studied patient opinions and preference on virtual versus in-person visits, and the factors influencing such preferences.MethodsTelephone surveys, consisting of 11 questions, of patients from 10 neuromuscular centers were completed.ResultsFive hundred and twenty surveys were completed. Twenty-six percent of respondents preferred virtual visits, while 50% preferred in-person visits. Sixty-four percent reported physical interaction as "very important." For receiving a new diagnosis, 55% preferred in-person vs 35% reporting no preference. Forty percent were concerned about a lack of physical examination vs 20% who were concerned about evaluating vital signs. Eighty four percent reported virtual visits were sufficiently private. Sixty eight percent did not consider expenses a factor in their preference. Although 92% were comfortable with virtual communication technology, 55% preferred video communications, and 19% preferred phone calls. Visit preference was not significantly associated with gender, diagnosis, disease severity, or symptom management. Patients who were concerned about a lack of physical exam or assessment of vitals had significantly higher odds of selecting in-person visits than no preference.DiscussionAlthough neither technology, privacy, nor finance burdened patients in our study, more patients preferred in-person visits than virtual visits and 40% were concerned about a lack of physical examination. Interactions that occur with in-person encounters had high importance for patients, reflecting differences in the perception of the patient-physician relationship between virtual and in-person visits

    A Genome-Wide Association Study of Myasthenia Gravis

    No full text
    IMPORTANCE: Myasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood. OBJECTIVE: To identify genetic variants that alter susceptibility to myasthenia gravis, we performed a genome-wide association study. DESIGN, SETTING, AND PARTICIPANTS: DNA was obtained from 1032 white individuals from North America diagnosed as having acetylcholine receptor antibody–positive myasthenia gravis and 1998 race/ethnicity-matched control individuals from January 2010 to January 2011. These samples were genotyped on Illumina OmniExpress single-nucleotide polymorphism arrays. An independent cohort of 423 Italian cases and 467 Italian control individuals were used for replication. MAIN OUTCOMES AND MEASURES: We calculated P values for association between 8114394 genotyped and imputed variants across the genome and risk for developing myasthenia gravis using logistic regression modeling. A threshold P value of 5.0 × 10(−8) was set for genome-wide significance after Bonferroni correction for multiple testing. RESULTS: In the over all case-control cohort, we identified association signals at CTLA4 (rs231770; P = 3.98 × 10(−8); odds ratio, 1.37; 95% CI, 1.25–1.49), HLA-DQA1 (rs9271871; P = 1.08 × 10(−8); odds ratio, 2.31; 95% CI, 2.02 – 2.60), and TNFRSF11A (rs4263037; P = 1.60 × 10(−9); odds ratio, 1.41; 95% CI, 1.29–1.53). These findings replicated for CTLA4 and HLA-DQA1 in an independent cohort of Italian cases and control individuals. Further analysis revealed distinct, but overlapping, disease-associated loci for early- and late-onset forms of myasthenia gravis. In the late-onset cases, we identified 2 association peaks: one was located in TNFRSF11A (rs4263037; P = 1.32 × 10(−12); odds ratio, 1.56; 95% CI, 1.44–1.68) and the other was detected in the major histocompatibility complex on chromosome 6p21 (HLA-DQA1; rs9271871; P = 7.02 × 10(−18); odds ratio, 4.27; 95% CI, 3.92–4.62). Association within the major histocompatibility complex region was also observed in early-onset cases (HLA-DQA1; rs601006; P = 2.52 × 10(−11); odds ratio, 4.0; 95% CI, 3.57–4.43), although the set of single-nucleotide polymorphisms was different from that implicated among late-onset cases. CONCLUSIONS AND RELEVANCE: Our genetic data provide insights into aberrant cellular mechanisms responsible for this prototypical autoimmune disorder. They also suggest that clinical trials of immunomodulatory drugs related to CTLA4 and that are already Food and Drug Administration approved as therapies for other autoimmune diseases could be considered for patients with refractory disease
    corecore