140 research outputs found

    Scattering into one-dimensional waveguides from a coherently-driven quantum-optical system

    Full text link
    We develop a new computational tool and framework for characterizing the scattering of photons by energy-nonconserving Hamiltonians into unidirectional (chiral) waveguides, for example, with coherent pulsed excitation. The temporal waveguide modes are a natural basis for characterizing scattering in quantum optics, and afford a powerful technique based on a coarse discretization of time. This overcomes limitations imposed by singularities in the waveguide-system coupling. Moreover, the integrated discretized equations can be faithfully converted to a continuous-time result by taking the appropriate limit. This approach provides a complete solution to the scattered photon field in the waveguide, and can also be used to track system-waveguide entanglement during evolution. We further develop a direct connection between quantum measurement theory and evolution of the scattered field, demonstrating the correspondence between quantum trajectories and the scattered photon state. Our method is most applicable when the number of photons scattered is known to be small, i.e. for a single-photon or photon-pair source. We illustrate two examples: analytical solutions for short laser pulses scattering off a two-level system and numerically exact solutions for short laser pulses scattering off a spontaneous parametric downconversion (SPDC) or spontaneous four-wave mixing (SFWM) source. Finally, we note that our technique can easily be extended to systems with multiple ground states and generalized scattering problems with both finite photon number input and coherent state drive, potentially enhancing the understanding of, e.g., light-matter entanglement and photon phase gates.Comment: Numerical package in collaboration with Ben Bartlett (Stanford University), implemented in QuTiP: The Quantum Toolbox in Python, Quantum 201

    Quantum trajectories and their statistics for remotely entangled quantum bits

    Get PDF
    We experimentally and theoretically investigate the quantum trajectories of jointly monitored transmon qubits embedded in spatially separated microwave cavities. Using nearly quantum-noise limited superconducting amplifiers and an optimized setup to reduce signal loss between cavities, we can efficiently track measurement-induced entanglement generation as a continuous process for single realizations of the experiment. The quantum trajectories of transmon qubits naturally split into low and high entanglement classes corresponding to half-parity collapse. The distribution of concurrence is found at any given time and we explore the dynamics of entanglement creation in the state space. The distribution exhibits a sharp cut-off in the high concurrence limit, defining a maximal concurrence boundary. The most likely paths of the qubits' trajectories are also investigated, resulting in three probable paths, gradually projecting the system to two even subspaces and an odd subspace. We also investigate the most likely time for the individual trajectories to reach their most entangled state, and find that there are two solutions for the local maximum, corresponding to the low and high entanglement routes. The theoretical predictions show excellent agreement with the experimental entangled qubit trajectory data.Comment: 11 pages and 4 figure

    Radio frequency mixing modules for superconducting qubit room temperature control systems

    Full text link
    As the number of qubits in nascent quantum processing units increases, the connectorized RF (radio frequency) analog circuits used in first generation experiments become exceedingly complex. The physical size, cost and electrical failure rate all become limiting factors in the extensibility of control systems. We have developed a series of compact RF mixing boards to address this challenge by integrating I/Q quadrature mixing, IF(intermediate frequency)/LO(local oscillator)/RF power level adjustments, and DC (direct current) bias fine tuning on a 40 mm ×\times 80 mm 4-layer PCB (printed circuit board) board with EMI (electromagnetic interference) shielding. The RF mixing module is designed to work with RF and LO frequencies between 2.5 and 8.5 GHz. The typical image rejection and adjacent channel isolation are measured to be \sim27 dBc and \sim50 dB. By scanning the drive phase in a loopback test, the module short-term amplitude and phase linearity are typically measured to be 5×\times104^{-4} (Vpp_{\mathrm{pp}}/Vmean_{\mathrm{mean}}) and 1×\times103^{-3} radian (pk-pk). The operation of RF mixing board was validated by integrating it into the room temperature control system of a superconducting quantum processor and executing randomized benchmarking characterization of single and two qubit gates. We measured a single-qubit process infidelity of 9.3(3)×1049.3(3) \times 10^{-4} and a two-qubit process infidelity of 2.7(1)×1022.7(1) \times 10^{-2}.Comment: Updated the title. Added the git repository of RF mixing modules design. Added the explanation for SRB. Added funding agenc
    corecore