3 research outputs found

    Antifungal Activity of <i>Eclipta alba</i> Metabolites against Sorghum Pathogens

    Get PDF
    Unscientific use of synthetic fungicides in plant disease management has environmental ramifications, such as disease resurgence and serious health problems due to their carcinogenicity. This has prompted the identification and development of eco-friendly greener alternatives. Eclipta alba extract was evaluated for its antifungal activity in in vitro and in vivo against sorghum fungal pathogens Fusarium thapsinum, Alternaria alternata, Epicoccum sorghinum, and Curvularia lunata. The column purified methanolic extract of E. alba exhibited good antifungal activity against the target pathogens. The MIC was observed at 80 mg/mL for all tested pathogenic fungi, whereas MFC was 80 mg/mL for E. sorghinum, 100 mg/mL for F. thapsinum, A. alternata, and C. lunata. In vitro germination percentage was significantly high in seeds treated with E. alba extract (98%) over untreated control (91%). Significant disease protection of 95% was observed in greenhouse and 66% disease protection was noticed in field experiments. The efficacy of E. alba extract in field conditions was improved with the use of E. alba extract formulation. The profile of phytochemicals in E. alba methanol fractions was obtained by ultra-performance liquid chromatography (UPLC) mass spectroscopy. The [M-H]&#8722; at m/z 313.3, m/z 797.9, and m/z 269.0 revealed the presence of wedelolactone, eclalbasaponin II, and apigenin, respectively. The H-nuclear magnetic resonance spectroscopy (1H-NMR) chemical shift value supported the findings of the mass spectrometry. The results highlighted the possible use of E. alba methanolic extract as alternative to chemical fungicide in sorghum disease management

    Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens

    No full text
    Background: Maize is one of the staple food crops grown in India. Fusarium verticillioides (Sacc.) Nirenberg is the most important fungal pathogen of maize, associated with diseases such as ear rot and kernel rot. Apart from the disease, it is capable of producing fumonisins, which have elicited considerable attention over the past decade owing to their association with animal disease syndromes. Hence, the present study was conducted to evaluate ecofriendly approaches by using a maize rhizosphere isolate of Pseudomonas fluorescens (Trev.) Mig. and its formulation to control ear rot disease and fumonisin accumulation, and also to study the capacity to promote growth and yield of maize. In vitro assays were conducted to test the efficacy of P. fluorescens as a seed treatment on seed germination, seedling vigour and also the incidence of F. verticillioides in different maize cultivars. The field trials included both seed treatment and foliar spray. For all the experiments, P. fluorescens was formulated using corn starch, wheat bran and talc powder. In each case there were three different treatments of P. fluorescens, a non-treated control and chemical control. Results: Pure culture and the formulations, in comparison with the control, increased plant growth and vigour as measured by seed germination, seedling vigour, plant height, 1000 seed weight and yield. P. fluorescens pure culture used as seed treatment and as spray treatment enhanced the growth parameters and reduced the incidence of F. verticillioides and the level of fumonisins to a maximum extent compared with the other treatments. Conclusion: The study demonstrates the potential role of P. fluorescens and its formulations in ear rot disease management. The biocontrol potential of this isolate is more suited for fumonisin reduction in maize kernels intended for human and animal feed
    corecore