59 research outputs found

    The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016)

    Get PDF

    Advances in the treatment of solid tumors in children and adolescents

    No full text
    Abstract Tumor is one of the leading causes of death in children (0 to 14‐year‐old) and adolescents (15 to 19‐year‐old) worldwide. Unlike adult tumors, childhood and adolescent tumors are unique in their type, molecular characteristics, and pathogenesis, and their treatment involves many challenges. In recent years, with the development of a large number of clinical studies, the survival rate of children and adolescents with tumors has improved significantly. The extensive research and application of optimized treatment regimens and new targeted drugs have led to new hope for the treatment of childhood and adolescent tumors. This article reviews the clinical and basic research and treatment of childhood and adolescent tumors and provides new ideas for the future development of precise treatment of childhood and adolescent tumors

    Impacts of Climate and Environmental Change on Bean Cultivation in China

    No full text
    The impact of human-caused environmental pollution and global climate change on the economy and society can no longer be underestimated. Agriculture is the most directly and vulnerably affected sector by climate change. This study used beans, the food crop with the largest supply and demand gap in China, as the research object and established a panel spatial error model consisting of multiple indicators of four factors: climate environment, economic market, human planting behavior and technical development level of 25 provinces in China from 2005 to 2019 to explore the impact of climate environmental changes on the yields of beans. The study shows that: (1) The increase in precipitation has a significant positive effect on bean yields; however, the increase in temperature year by year has a significant negative effect on bean yields; (2) carbon emissions do not directly affect bean production at present but may have an indirect impact on bean production; (3) artificial irrigation and fertilization behavior on bean production has basically reached saturation, making it difficult to continue to increase bean yields and (4) the development of technology and human activity is a mixed blessing, and the consequent inhibiting effects on bean production are currently unable to offset their promoting effects. Thus, when it comes to bean cultivation, China should focus mainly on the overall impact of environmental changes on its production, rather than technical enhancements such as irrigation and fertilization

    Systematic and bibliographic review of sustainability indicators for contaminated site remediation: comparison between China and western nations

    No full text
    Sustainable remediation, which promotes the use of more sustainable practices during environmental clean-up activities, is an area of intense international development. While numerous indicators related to sustainable remediation assessment have been utilized and published in related academic literature, they are difficult to unify and vary in emphasis between countries. Following literature retrieval from CNKI, Springer, ScienceDirect, and Wiley Online databases, we present a systematic and bibliometric analysis of relevant national and international literature to define the most frequently considered indicators of sustainability, which play important roles in selecting remediation technologies or site management methods from a sustainability perspective. Following the application of co-occurrence analysis and social network analysis, the results indicate that 1) environmental criteria are most commonly used in evaluating remediation technologies, with significantly less emphasis on social criteria in Chinese publications in particular; 2) with an increasing number of publications in the last 20 years, sustainable remediation has gone through an initial stage, rising stage, and burst or wider adoption stage, characterized by a transformation of the research theme from a predominantly risk-based management approach to a sustainability-based one, with risk management as an underpinning principle; 3) health, resource, cost, and time are the most widely used indicators in terms of social, environmental, economic, and technical criteria, respectively; 4) clear differences exist between China and other nations, particularly in the frequency of usage of each indicator, the application of social criteria, and preferred stakeholders. Nevertheless, China has made significant progress and now makes increasing contributions to sustainable remediation at an international level.</p

    Potential Molecular Mechanisms of Chaihu-Shugan-San in Treatment of Breast Cancer Based on Network Pharmacology

    No full text
    Breast cancer is one of the most common cancers endangering women’s health all over the world. Traditional Chinese medicine is increasingly recognized as a possible complementary and alternative therapy for breast cancer. Chaihu-Shugan-San is a traditional Chinese medicine prescription, which is extensively used in clinical practice. Its therapeutic effect on breast cancer has attracted extensive attention, but its mechanism of action is still unclear. In this study, we explored the molecular mechanism of Chaihu-Shugan-San in the treatment of breast cancer by network pharmacology. The results showed that 157 active ingredients and 8074 potential drug targets were obtained in the TCMSP database according to the screening conditions. 2384 disease targets were collected in the TTD, OMIM, DrugBank, GeneCards disease database. We applied the Bisogenet plug-in in Cytoscape 3.7.1 to obtain 451 core targets. The biological process of gene ontology (GO) involves the mRNA catabolic process, RNA catabolic process, telomere organization, nucleobase-containing compound catabolic process, heterocycle catabolic process, and so on. In cellular component, cytosolic part, focal adhesion, cell-substrate adherens junction, and cell-substrate junction are highly correlated with breast cancer. In the molecular function category, most proteins were addressed to ubiquitin-like protein ligase binding, protein domain specific binding, and Nop56p-associated pre-rRNA complex. Besides, the results of the KEGG pathway analysis showed that the pathways mainly involved in apoptosis, cell cycle, transcriptional dysregulation, endocrine resistance, and viral infection. In conclusion, the treatment of breast cancer by Chaihu-Shugan-San is the result of multicomponent, multitarget, and multipathway interaction. This study provides a certain theoretical basis for the treatment of breast cancer by Chaihu-Shugan-San and has certain reference value for the development and application of new drugs

    Screening and diversity of culturable HNAD bacteria in the MBR sewage treatment system.

    No full text
    The activated sludge was collected from the Membrane BioReactor (MBR) pool of the sewage treatment system of Sanxing Town, Jintang County, Chengdu, to obtain a good population of heterotrophic nitrifying/aerobic denitrifying (HNAD) bacteria. After undergoing enrichment, isolation, and purification, the HNAD bacteria were selected using the pure culture method. The 16S rDNA molecular technology was used to determine the taxonomy of bacteria. The heterophic nitrifying ability and denitrification capacity of HNAD strains was ascertained through their growth characteristics in heterotrophic nitrification and denitrification media. The results showed that 53 HNAD strains selected from the MBR pool belonged to 2 phyla, 3 classes, 6 orders, 6 families, and 7 genera, with 26 species. Acinetobacter was the largest and dominant genus. Among these, strains numbered (bacterial strain) SW21HD14, SW21HD17, and SW21HD18 were potentially new species in the Acinetobacter genus. Each HNAD strain showed a significant heterotrophic nitrifying and aerobic denitrifying efficiency compared with the control strain (P < 0.05). Specifically, 10 strains demonstrated ammonia nitrogen degradation of greater than 70 mg·L-1 and 9 strains demonstrated nitrate nitrogen degradation above 150 mg·L-1. The HNAD bacteria, which were selected from the MBR pool of sewage treatment system of the Sanxing Town sewage treatment plant, exhibited rich diversity and strong nitrogen removal ability. These findings offered an effective strain source and theoretical basis for implementing biological denitrification technology that involves synchronous nitrification and denitrification

    Screening and biodiversity analysis of cultivable inorganic phosphate-solubilizing bacteria in the rhizosphere of Hydrilla verticillata.

    No full text
    The inorganic phosphate-solubilizing bacteria (IPB) in the rhizosphere of Hydrilla verticillata can convert insoluble inorganic phosphorus in the environment into soluble phosphorus that can be directly absorbed and utilized by Hydrilla verticillata. In this research, the roots and rhizosphere sediments of Hydrilla verticillata were collected from high-organic matter urban landscape water. The National Botanical Research Institute's Phosphate growth medium (NBRIP medium) was used to screen for efficient cultivable IPB. The 16S rRNA gene sequence analysis was used to determine the taxonomic affiliation of the strains, and ammonium molybdate spectrophotometry was used to detect the phosphate-solubilizing ability of the strains. The results show that a total of 28 IPB strains with good phosphate-solubilizing effect are obtained from the roots and rhizosphere sediments of Hydrilla verticillata. These IPB strains belong to two phyla, four orders, seven classes, nine families, and nine genera. Among these, Bacillus and Acinetobacter are the dominant genera, and the strains SWIH-7, SWIP-6, SWIP-7, SWIP-13, SWIP-15 and SWIP-16 are potential new species. The IPB strains isolated and screened in this research are rich in diversity, with potential new species and stable phosphate-solubilizing characteristic. These IPB strains are suitable for further development as microbial bacterial agents, which can be applied to promote the recovery of submerged plants in polluted water with high-organic matter, treatment of polluted water and ecological restoration of water

    Anesthesia and surgery-induced elevation of CSF sTREM2 is associated with early cognitive dysfunction after thoracoabdominal aortic dissection surgery

    No full text
    Abstract Purpose Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) concentration is increased in cerebrospinal fluid (CSF) in early symptomatic phase of Alzheimer’s disease (AD). This study investigated whether CSF sTREM2 has a relationship with early cognitive dysfunction following surgery in cardiac surgery patients. Methods A total of 82 patients undergoing thoracoabdominal aortic replacement were recruited in this study. Neuropsychological testing battery was conducted before and after surgery. Postoperative cognitive dysfunction (POCD) was defined as a Z-score > 1.96 on at least 2 different tests or Telephone Interviews for Cognitive Status-Modified (TICS-M) score < 27. The CSF and serum sTREM2, Aβ42, T-tau and P-tau were collected and measured by ELISA on day before surgery and postoperative day 3. Results Patients were classified into POCD (n = 34) and non-POCD (n = 48) groups according to Z-score. Compared to non-POCD group, the levels of CSF sTREM2 (p < 0.001) and serum sTREM2 (p = 0.001) were significantly higher in POCD group on postoperative day 3. The levels of Aβ42 (p = 0.005) and Aβ42/T-tau ratio (p = 0.036) were significantly lower in POCD group on postoperative day 3. Multivariate logistic regression analysis revealed that higher value of postoperative CSF sTREM2 (odds ratio: 1.06, 95% confidence interval: 1.02–1.11, p = 0.009), age (OR: 1.15, 95%CI: 1.03–1.28, p = 0.014) and POD duration (OR: 2.47, 95%CI: 1.15–5.29, p = 0.02) were the risk factors of POCD. Conclusion This study indicates that anesthesia and surgery-induced elevation of CSF sTREM2 is associated with an increased risk of early cognitive dysfunction following surgery

    Dynamic capacity modelling of soil environment carrying capacity, and developing a soil quality early warning framework for development land in China

    No full text
    The knowledge of soil environmental quality and its changing trends is important for safe and sustainable land utilization. However, comprehensive information on soil environment carrying capacity, involving environmental, economic and social pressures, is relatively rare. In this study, a modified dynamic capacity model is developed to estimate soil environment carrying capacity in terms of a combined consideration of soil environment capacity, cumulative input/output rate and risk characteristics. Based on the method proposed, this paper demonstrates the current pollution status and remaining soil capacity of the Beijing urban area, and establishes a conceptual “early warning” model for soil environmental quality, to predict time-dependent changing patterns of soil pollutants under different accumulation scenarios. The results showed that for Beijing soil environmental carrying capacity varied with land use type and pollutant. Compared with Cu, Zn and Pb, Cd posed the greatest threat to soil environmental carrying capacity in both residential areas and green parks. Heavy metal carrying capacity in soils in built-up areas in Beijing was not overloaded currently, and will not deteriorate significantly over the short-to medium-term in a hypothetical “decreased input” scenario. The method proposed provides a simple, cost-effective, and quantitative tool for mapping soil quality level, and assessing the need for risk management measures, in China and elsewhere
    corecore