4 research outputs found
Gravity theory in SAP-geometry
The aim of the present paper is to construct a field theory in the context of
absolute parallelism (Teleparallel) geometry under the assumption that the
canonical connection is semi-symmetric. The field equations are formulated
using a suitable Lagrangian first proposed by Mikhail and Wanas. The
mathematical and physical consequences arising from the obtained field
equations are investigated.Comment: 14 pages, References added and a reference updated, minor correction
Linear Connections and Curvature Tensors in the Geometry of Parallelizable Manifolds
In this paper we discuss curvature tensors in the context of Absolute
Parallelism geometry. Different curvature tensors are expressed in a compact
form in terms of the torsion tensor of the canonical connection. Using the
Bianchi identities some other identities are derived from the expressions
obtained. These identities, in turn, are used to reveal some of the properties
satisfied by an intriguing fourth order tensor which we refer to as Wanas
tensor. A further condition on the canonical connection is imposed, assuming it
is semi-symmetric. The formulae thus obtained, together with other formulae
(Ricci tensors and scalar curvatures of the different connections admitted by
the space) are calculated under this additional assumption. Considering a
specific form of the semi-symmetric connection causes all nonvanishing
curvature tensors to coincide, up to a constant, with the Wanas tensor.
Physical aspects of some of the geometric objects considered are mentioned.Comment: 16 pages LaTeX file, Changed title, Changed content, Added
references, Physical features stresse
On Finslerized Absolute Parallelism spaces
The aim of the present paper is to construct and investigate a Finsler
structure within the framework of a Generalized Absolute Parallelism space
(GAP-space). The Finsler structure is obtained from the vector fields forming
the parallelization of the GAP-space. The resulting space, which we refer to as
a Finslerized Parallelizable space, combines within its geometric structure the
simplicity of GAP-geometry and the richness of Finsler geometry, hence is
potentially more suitable for applications and especially for describing
physical phenomena. A study of the geometry of the two structures and their
interrelation is carried out. Five connections are introduced and their torsion
and curvature tensors derived. Some special Finslerized Parallelizable spaces
are singled out. One of the main reasons to introduce this new space is that
both Absolute Parallelism and Finsler geometries have proved effective in the
formulation of physical theories, so it is worthy to try to build a more
general geometric structure that would share the benefits of both geometries.Comment: Some references added and others removed, PACS2010, Typos corrected,
Amendemrnts and revisions performe