9 research outputs found

    MamuSNP: A Resource for Rhesus Macaque (Macaca mulatta) Genomics

    Get PDF
    We developed a novel method for identifying SNPs widely distributed throughout the coding and non-coding regions of a genome. The method uses large-scale parallel pyrosequencing technology in combination with bioinformatics tools. We used this method to generate approximately 23,000 candidate SNPs throughout the Macaca mulatta genome. We estimate that over 60% of the SNPs will be of high frequency and useful for mapping QTLs, genetic management, and studies of individual relatedness, whereas other less frequent SNPs may be useful as population specific markers for ancestry identification. We have created a web resource called MamuSNP to view the SNPs and associated information online. This resource will also be useful for researchers using a wide variety of Macaca species in their research

    A Global Assembly of Cotton ESTs

    Get PDF
    Approximately 185,000 Gossypium EST sequences comprising >94,800,000 nucleotides were amassed from 30 cDNA libraries constructed from a variety of tissues and organs under a range of conditions, including drought stress and pathogen challenges. These libraries were derived from allopolyploid cotton (Gossypium hirsutum; AT and DT genomes) as well as its two diploid progenitors,Gossypium arboreum (A genome) and Gossypium raimondii (D genome). ESTs were assembled using the Program for Assembling and Viewing ESTs (PAVE), resulting in 22,030 contigs and 29,077 singletons (51,107 unigenes). Further comparisons among the singletons and contigs led to recognition of 33,665 exemplar sequences that represent a nonredundant set of putative Gossypium genes containing partial or full-length coding regions and usually one or two UTRs. The assembly, along with their UniProt BLASTX hits, GO annotation, and Pfam analysis results, are freely accessible as a public resource for cotton genomics. Because ESTs from diploid and allotetraploid Gossypium were combined in a single assembly, we were in many cases able to bioinformatically distinguish duplicated genes in allotetraploid cotton and assign them to either the A or D genome. The assembly and associated information provide a framework for future investigation of cotton functional and evolutionary genomics.This article is from Genome Research 16 (2006): 441, doi:10.1101/gr.4602906.</p

    A global assembly of cotton ESTs

    Get PDF
    Approximately 185,000 Gossypium EST sequences comprising >94,800,000 nucleotides were amassed from 30 cDNA libraries constructed from a variety of tissues and organs under a range of conditions, including drought stress and pathogen challenges. These libraries were derived from allopolyploid cotton (Gossypium hirsutum; A(T) and D(T) genomes) as well as its two diploid progenitors, Gossypium arboreum (A genome) and Gossypium raimondii (D genome). ESTs were assembled using the Program for Assembling and Viewing ESTs (PAVE), resulting in 22,030 contigs and 29,077 singletons (51,107 unigenes). Further comparisons among the singletons and contigs led to recognition of 33,665 exemplar sequences that represent a nonredundant set of putative Gossypium genes containing partial or full-length coding regions and usually one or two UTRs. The assembly, along with their UniProt BLASTX hits, GO annotation, and Pfam analysis results, are freely accessible as a public resource for cotton genomics. Because ESTs from diploid and allotetraploid Gossypium were combined in a single assembly, we were in many cases able to bioinformatically distinguish duplicated genes in allotetraploid cotton and assign them to either the A or D genome. The assembly and associated information provide a framework for future investigation of cotton functional and evolutionary genomics
    corecore