32 research outputs found

    Al<sub>2</sub>Pt fĂŒr die Sauerstoffentwicklungsreaktion bei der Wasserspaltung: eine Strategie zur Erzeugung von MultifunktionalitĂ€t in der Elektrokatalyse

    Get PDF
    Die Herstellung von Wasserstoff durch Wasserelektrolyse ist nur möglich, wenn wirksame und stabile Katalysatoren fĂŒr die Sauerstoffentwicklungsreaktion (Oxygen Evolution Reaction, OER) verfĂŒgbar sind. Intermetallische Verbindungen mit genau definierter Kristallstruktur und elektronischen Eigenschaften sowie besonderer chemischer Bindung werden als Vorstufe fĂŒr neue Werkstoffe vorgeschlagen, die interessante katalytische Eigenschaften aufweisen. Al2Pt kristallisiert im Anti‐Fluorit‐Kristallstrukturtyp und zeigt eine stark polare chemische Bindung. Platin ist hierbei katalytisch aktiv und wird auch unter den Bedingungen der Sauerstoffentwicklungsreaktion vergleichsweise wenig aus der KatalysatoroberflĂ€che herausgelöst. Im Folgenden wird die unerwartete LeistungsfĂ€higkeit einer OberflĂ€chen‐Nanokomposit‐Architektur beschrieben, die aus der selbstorganisierten Umwandlung der intermetallischen Vorstufe Al2Pt resultiert. Hierbei wird insbesondere das Langzeitverhalten der katalytischen AktivitĂ€t und StabilitĂ€t unter den Bedingungen der Sauerstoffentwicklungsreaktion untersucht

    Chemical Bonding Analysis as a Guide for the Preparation of New Compounds: The Case of VIrGe and HfPtGe

    No full text
    The chemical bonding of transition metal compounds with a MgAgAs-type of crystal structure is analyzed with quantum chemical position-space techniques. The observed trends in QTAIM Madelung energy and nearest neighbor electron sharing explain the occurrence of recently synthesized MgAgAs-type compounds, TiPtGe and TaIrGe, at the boundary to the TiNiSi-type crystal structure. These bonding indicators are used to identify favorable element combinations for new MgAgAs-type compounds. The new phases—the high-temperature VIrGe and the low-temperature HfPtGe—showing this type of crystal structure are prepared and characterized by powder X-ray diffraction and differential thermal analysis

    Chemical Bonding Analysis as a Guide for the Preparation of New Compounds: The Case of VIrGe and HfPtGe

    No full text
    The chemical bonding of transition metal compounds with a MgAgAs-type of crystal structure is analyzed with quantum chemical position-space techniques. The observed trends in QTAIM Madelung energy and nearest neighbor electron sharing explain the occurrence of recently synthesized MgAgAs-type compounds, TiPtGe and TaIrGe, at the boundary to the TiNiSi-type crystal structure. These bonding indicators are used to identify favorable element combinations for new MgAgAs-type compounds. The new phases—the high-temperature VIrGe and the low-temperature HfPtGe—showing this type of crystal structure are prepared and characterized by powder X-ray diffraction and differential thermal analysis

    Crystal structure of calcium nickel digallide, CaNiGa<sub>2</sub>

    No full text

    Polycation-Polyanion Architecture of the Intermetallic Compound Mg<sub>3-x</sub>Ga<sub>1+x</sub>Ir

    No full text
    Mg3-xGa1+xIr (x = 0.05) was synthesized by direct reaction of the elements in welded tantalum containers at 1200 degrees C and subsequent annealing at 500 degrees C for 30 days. Its crystal structure represents a new prototype and was determined by single-crystal technique as follows: space group P6(3)/mcm, Pearson symbol hP90, Z = 18, a = 14.4970(3) angstrom, c = 8.8638(3) angstrom. The composition and atomic arrangement in Mg3GaIr do not follow the 8-N rule due to the lack of valence electrons. Based on chemical bonding analysis in positional space, it was shown that the title compound has a polycationic-polyanionic organization. In comparison with other known intermetallic substances with this kind of bonding pattern, both the polyanion and the polyanion are remarkably complex. Mg3-xGa1+xIr is an example of how the general organization of intermetallic substances (e.g., formation of polyanions and polycations) can be understood by extending the principles of 8-N compounds to electron-deficient materials with multi-atomic bonding
    corecore