445 research outputs found

    Classical and Quantum Approach of Quasi Normal Modes in Linear Optical Regime: An Application to One Dimensional Photonic Crystals

    Full text link
    The definition of natural modes for confined structures is one of the central problems in physics, as in nuclear physics, astrophysics, etc. The main problem is due to the boundary conditions, when they are such to push out the problem from the class of Sturm-Liouville. This occurs when boundary conditions imply the presence of eigen-values, as for example when a scatterer excited from the outside gives rise to a transmitted and reflected field. An open cavity with an external or internal excitation represents a "non-canonical" problem, in the sense of a Sturm-Liouville's problem, due to the fact that cavity modes couple themselves with external modes. This problem is crucial when one intends to study light-matter interaction effects as absorption, spontaneous emission, stimulated emission, as they occur in micro-cavities.Comment: Ph-D Thesis in Electromagnetism: Settimi et al., Phys. Rev. E 68, 026614 [11 pages] (2003); Severini et al., Acta Phys. Hung. B 23/3-4, 135-142 (2005); Severini et al., Phys. Rev. E, 70, 056614 [12 pages](2004); Severini et al., Laser Physics, 16, 911-920 (2006); Settimi et al., Phys. Rev. E 71, 066606 [10 pages] (2005); Settimi et al., Eur. Phys. J. B. 50, 379-391 (2006

    Electrical impedance spectroscopy for real-time monitoring of the life cycle of graphene nanoplatelets filters for some organic industrial pollutants

    Get PDF
    This article proposes an approach for smart monitoring of the life cycle of innovative graphene-haled filters for water remediation in the presence of pollutants. The measurement technique is based on suitable figures of merit that analyze the time variation of the electrical impedance frequency spectrum. The proposed study considers the remediation of two toxic industrial pollutants, such as the acetonitrile and the 2,4-dichlorophenol. The contribution of this article is twofold. The first is the demonstration of a reliable monitoring setup that is able, for the selected use cases, to correlate in real time the behavior of the electrical impedance of the filter to its status, defined as "absence of pollutants" and/or "saturation." The second contribution is the proposal of suitable figures of merit, based on measurement of the impedance frequency spectrum, able to increase the measurement sensitivity and the reliability and to mitigate some sources of uncertainty typically associated with these kinds of setups and measurements. Results show that the proposed graphene-based filters combine very good filtering capability and high sensitivity of the electrical impedance to the considered pollutants. These results suggest further investigations with other pollutants and the potential use of this technique for the predictive maintenance of the water filters in industrial applications, by endowing the graphene filters of smart sensing devices

    Electro-Thermal Parameters of Graphene Nano-Platelets Films for De-Icing Applications

    Get PDF
    This paper provides a study of some relevant electro-thermal properties of commercial films made by pressed graphene nano-platelets (GNPs), in view of their use as heating elements in innovative de-icing systems for aerospace applications. The equivalent electrical resistivity and thermal emissivity were studied, by means of models and experimental characterization. Macroscopic strips with a length on the order of tens of centimeters were analyzed, either made by pure GNPs or by composite mixtures of GNPs and a small percentage of polymeric binders. Analytical models are derived and experimentally validated. The thermal response of these graphene films when acting as a heating element is studied and discussed

    Photon-pair generation in random nonlinear layered structures

    Full text link
    Nonlinearity and sharp transmission spectra of random 1D nonlinear layered structures are combined together to produce photon pairs with extremely narrow spectral bandwidths. Indistinguishable photons in a pair are nearly unentangled. Also two-photon states with coincident frequencies can be conveniently generated in these structures if photon pairs generated into a certain range of emission angles are superposed. If two photons are emitted into two different resonant peaks, the ratio of their spectral bandwidths may differ considerably from one and two photons remain nearly unentangled.Comment: 10 pages, 16 figure

    INTEGRATED DATING OF THE CONSTRUCTION AND RESTORATION OF THE MODENA CATHEDRAL VAULTS (NORTHERN ITALY): PRELIMINARY RESULTS

    Get PDF
    After the last damaging earthquake in 2012, an anti-seismic reinforcement project of the cathedral of Modena was designed giving us the opportunity to investigate and date the building materials. Radiocarbon (14C), optically stimulated luminescence (OSL), and thermoluminescence (TL) dating techniques were performed on the vaults with the aim to (1) clarify the construction timing, (2) define the history of the restorations, and (3) explore the possible correlation of the main restoration works to the earthquake chronology deduced from the historic catalog. Preliminary results show that medieval older bricks were reused for most of the original construction. Only lime and non-gypsum mortar was used for the original construction in the 15th century and for later repair of damage caused by earthquakes in the 16th and 17th centuries. Gypsum mortar was used for later repair in the 18th century. The results show much stronger damage due to earthquakes than previously thought

    A multidisciplinary study unveils the nature of a Roman ink of the I century AD

    Get PDF
    A multi-instrumental approach combining highly sensitive Synchrotron Radiation-based techniques was used to provide information on the real composition of a dry black ink powder found in a bronze inkwell of the first century AD. The presence of Pb, Cu and Fe in the powder, revealed by XRF and ICP-OES data, leads to raise several hypotheses on their origin. The inkpot and its lid were also investigated by Hand-Held XRF, revealing a bronze alloy (Cu-Sn) with a certain amount of Fe and Pb. The lid was found to be particularly enriched in lead. XRPD, XAS and FTIR measurements showed a substantial presence of silicates and common clay minerals in the ink along with cerussite and malachite, Pb and Cu bearing-carbonates, respectively. These evidences support the hypothesis of an important contamination of the ink sample by the burial environment (soil) and the presence of degradation products of the bronze inkpot. The combined use of IR, Raman, and GC-MS evidenced that the black ink is mainly composed of amorphous carbon deriving from the combustion of organic material mixed with a natural binding agent, Arabic gum

    Mapping of periodically poled crystals via spontaneous parametric down-conversion

    Full text link
    A new method for characterization of periodically poled crystals is developed based on spontaneous parametric down-conversion. The method is demonstrated on crystals of Y:LiNbO3, Mg:Y:LiNbO3 with non-uniform periodically poled structures, obtained directly under Czochralski growth procedure and designed for application of OPO in the mid infrared range. Infrared dispersion of refractive index, effective working periods and wavelengths of OPO were determined by special treatment of frequency-angular spectra of spontaneous parametric down-conversion in the visible range. Two-dimensional mapping via spontaneous parametric down-conversion is proposed for characterizing spatial distribution of bulk quasi-phase matching efficiency across the input window of a periodically poled sample.Comment: 19 pages, 6 figure

    Resting-state functional MRI in multicenter studies on multiple sclerosis: a report on raw data quality and functional connectivity features from the Italian Neuroimaging Network Initiative

    Get PDF
    The Italian Neuroimaging Network Initiative (INNI) is an expanding repository of brain MRI data from multiple sclerosis (MS) patients recruited at four Italian MRI research sites. We describe the raw data quality of resting-state functional MRI (RS-fMRI) time-series in INNI and the inter-site variability in functional connectivity (FC) features after unified automated data preprocessing. MRI datasets from 489 MS patients and 246 healthy control (HC) subjects were retrieved from the INNI database. Raw data quality metrics included temporal signal-to-noise ratio (tSNR), spatial smoothness (FWHM), framewise displacement (FD), and differential variation in signals (DVARS). Automated preprocessing integrated white-matter lesion segmentation (SAMSEG) into a standard fMRI pipeline (fMRIPrep). FC features were calculated on pre-processed data and harmonized between sites (Combat) prior to assessing general MS-related alterations. Across centers (both groups), median tSNR and FWHM ranged from 47 to 84 and from 2.0 to 2.5, and median FD and DVARS ranged from 0.08 to 0.24 and from 1.06 to 1.22. After preprocessing, only global FC-related features were significantly correlated with FD or DVARS. Across large-scale networks, age/sex/FD-adjusted and harmonized FC features exhibited both inter-site and site-specific inter-group effects. Significant general reductions were obtained for somatomotor and limbic networks in MS patients (vs. HC). The implemented procedures provide technical information on raw data quality and outcome of fully automated preprocessing that might serve as reference in future RS-fMRI studies within INNI. The unified pipeline introduced little bias across sites and appears suitable for multisite FC analyses on harmonized network estimates
    corecore