4 research outputs found

    Immunotactoid glomerulopathy is a rare entity with monoclonal and polyclonal variants

    No full text
    Immunotactoid glomerulopathy (ITG) is a rare form of glomerulonephritis for which our understanding is limited to case reports and small case series. Herein we describe the clinical, pathologic, and outcome characteristics of 73 patients with ITG who typically presented with proteinuria, hematuria, and renal insufficiency. Hematologic disorders were present in 66% of patients, including lymphoma in 41% (mainly chronic lymphocytic leukemia/small lymphocytic lymphoma), monoclonal gammopathy in 20%, and multiple myeloma in 6%. Light microscopy revealed endocapillary proliferative (35%), membranoproliferative (29%) and membranous (29%) patterns of glomerular involvement. Electron microscopy revealed characteristic microtubular deposits with a diameter of 14-60 nm, hollow cores, frequent parallel alignment, and a predominant distribution outside of the lamina densa of the glomerular basement membrane. Importantly, immunofluorescence revealed IgG-dominant staining which was light chain and IgG subclass restricted in 67% of cases, indicating monoclonal composition. This finding was used to distinguish monoclonal and polyclonal variants of ITG. As compared to polyclonal, monoclonal ITG had a higher incidence of lymphoma (53% vs.11%), multiple myeloma (8% vs. 0), and monoclonal gammopathy (22% vs. 16%). Monoclonal ITG was more commonly treated with clone-directed therapy, which was associated with more frequent remission and less frequent end stage kidney disease. Thus, a third of ITG cases are polyclonal but a quarter of these cases are associated with hematologic conditions, underscoring the need for hematologic evaluation in all patients with ITG. Hence, based on these distinctions, ITG should be subclassified into monoclonal and polyclonal variants. Prognosis of ITG is good if the underlying hematologic condition is treated

    Diagnostic laboratory standardization and validation of platelet transmission electron microscopy

    No full text
    <p>Platelet transmission electron microscopy (PTEM) is considered the gold standard test for assessing distinct ultrastructural abnormalities in inherited platelet disorders (IPDs). Nevertheless, PTEM remains mainly a research tool due to the lack of standardized procedures, a validated dense granule (DG) count reference range, and standardized image interpretation criteria. The aim of this study was to standardize and validate PTEM as a clinical laboratory test. Based on previously established methods, we optimized and standardized preanalytical, analytical, and postanalytical procedures for both whole mount (WM) and thin section (TS) PTEM. Mean number of DG/platelet (plt), percentage of plts without DG, platelet count (PC), mean platelet volume (MPV), immature platelet fraction (IPF), and plt light transmission aggregometry analyses were measured on blood samples from 113 healthy donors. Quantile regression was used to estimate the reference range for DG/plt, and linear regression was used to assess the association of DG/plt with other plt measurements. All PTEM procedures were standardized using commercially available materials and reagents. DG interpretation criteria were established based on previous publications and expert consensus, and resulted in improved operator agreement. Mean DG/plt was stable for 2 days after blood sample collection. The median within patient coefficient of variation for mean DG/plt was 22.2%; the mean DG/plt reference range (mid-95th %) was 1.2–4.0. Mean DG/plt was associated with IPF (<i>p </i>= .01, R<sup>2</sup> = 0.06) but not age, sex, PC, MPV, or plt maximum aggregation or primary slope of aggregation (<i>p </i>> .17, R<sup>2</sup> < 0.02). Baseline ultrastructural features were established for TS-PTEM. PTEM was validated using samples from patients with previously established diagnoses of IPDs. Standardization and validation of PTEM procedures and interpretation, and establishment of the normal mean DG/plt reference range and PTEM baseline ultrastructural features, will facilitate implementation of PTEM as a valid clinical laboratory test for evaluating ultrastructural abnormalities in IPDs.</p
    corecore