139 research outputs found

    Aging in Dense Colloids as Diffusion in the Logarithm of Time

    Full text link
    The far-from-equilibrium dynamics of glassy systems share important phenomenological traits. A transition is generally observed from a time-homogeneous dynamical regime to an aging regime where physical changes occur intermittently and, on average, at a decreasing rate. It has been suggested that a global change of the independent time variable to its logarithm may render the aging dynamics homogeneous: for colloids, this entails diffusion but on a logarithmic time scale. Our novel analysis of experimental colloid data confirms that the mean square displacement grows linearly in time at low densities and shows that it grows linearly in the logarithm of time at high densities. Correspondingly, pairs of particles initially in close contact survive as pairs with a probability which decays exponentially in either time or its logarithm. The form of the Probability Density Function of the displacements shows that long-ranged spatial correlations are very long-lived in dense colloids. A phenomenological stochastic model is then introduced which relies on the growth and collapse of strongly correlated clusters ("dynamic heterogeneity"), and which reproduces the full spectrum of observed colloidal behaviors depending on the form assumed for the probability that a cluster collapses during a Monte Carlo update. In the limit where large clusters dominate, the collapse rate is ~1/t, implying a homogeneous, log-Poissonian process that qualitatively reproduces the experimental results for dense colloids. Finally an analytical toy-model is discussed to elucidate the strong dependence of the simulation results on the integrability (or lack thereof) of the cluster collapse probability function.Comment: 6 pages, extensively revised, final version; for related work, see http://www.physics.emory.edu/faculty/boettcher/ or http://www.fysik.sdu.dk/staff/staff-vip/pas-personal.htm

    How a spin-glass remembers. Memory and rejuvenation from intermittency data: an analysis of temperature shifts

    Full text link
    The memory and rejuvenation aspects of intermittent heat transport are explored theoretically and by numerical simulation for Ising spin glasses with short-ranged interactions. The theoretical part develops a picture of non-equilibrium glassy dynamics recently introduced by the authors. Invoking the concept of marginal stability, this theory links irreversible `intermittent' events, or `quakes' to thermal fluctuations of record magnitude. The pivotal idea is that the largest energy barrier b(tw,T)b(t_w,T) surmounted prior to twt_w by thermal fluctuations at temperature TT determines the rate rq∝1/twr_q \propto 1/t_w of the intermittent events occurring near twt_w. The idea leads to a rate of intermittent events after a negative temperature shift given by rq∝1/tweffr_q \propto 1/t_w^{eff}, where the `effective age' tweff≄twt_w^{eff} \geq t_w has an algebraic dependence on twt_w, whose exponent contains the temperatures before and after the shift. The analytical expression is verified by numerical simulations. Marginal stability suggests that a positive temperature shift T→Tâ€ČT \to T' could erase the memory of the barrier b(tw,T)b(t_w,T). The simulations show that the barrier b(tw,Tâ€Č)≄b(tw,T)b(t_w,T') \geq b(t_w,T) controls the intermittent dynamics, whose rate is hence rq∝1/twr_q \propto 1/t_w. Additional `rejuvenation' effects are also identified in the intermittency data for shifts of both signs.Comment: Revised introduction and discussion. Final version to appear in Journal of Statistical Mechanics: Theory and Experimen

    Aging and intermittency in a p-spin model of a glass

    Full text link
    We numerically analyze the statistics of the heat flow between an aging system and its thermal bath, following a method proposed and tested for a spin-glass model in a recent Letter (P. Sibani and H.J. Jensen, Europhys. Lett.69, 563 (2005)). The present system, which lacks quenched randomness, consists of Ising spins located on a cubic lattice, with each plaquette contributing to the total energy the product of the four spins located at its corners. Similarly to our previous findings, energy leaves the system in rare but large, so called intermittent, bursts which are embedded in reversible and equilibrium-like fluctuations of zero average. The intermittent bursts, or quakes, dissipate the excess energy trapped in the initial state at a rate which falls off with the inverse of the age. This strongly heterogeneous dynamical picture is explained using the idea that quakes are triggered by energy fluctuations of record size, which occur independently within a number of thermalized domains. From the temperature dependence of the width of the reversible heat fluctuations we surmise that these domains have an exponential density of states. Finally, we show that the heat flow consists of a temperature independent term and a term with an Arrhenius temperature dependence. Microscopic dynamical and structural information can thus be extracted from numerical intermittency data. This type of analysis seems now within the reach of time resolved micro-calorimetry techniques.Comment: 9 pages, 6 figures, europhysics letter style, to appear in Physical Review

    Tempo and Mode of Evolution in the Tangled Nature Model

    Full text link
    We study the Tangled Nature model of macro evolution and demonstrate that the co-evolutionary dynamics produces an increasingly correlated core of well occupied types. At the same time the entire configuration of types becomes increasing de-correlated. This finding is related to ecosystem evolution. The systems level dynamics of the model is subordinated to intermittent transitions between meta-stable states. We improve on previous studies of the statistics of the transition times and show that the fluctuations in the offspring probability decreases with number of transitions. The longtime adaptation, as seen by an increasing population size is demonstrated to be related to the convexity of the offspring probability. We explain how the models behaviour is a mathematical reflection of Darwin's concept of adaptation of profitable variations.Comment: 6 pages, 5 figure

    Properties of the energy landscape of network models for covalent glasses

    Full text link
    We investigate the energy landscape of two dimensional network models for covalent glasses by means of the lid algorithm. For three different particle densities and for a range of network sizes, we exhaustively analyse many configuration space regions enclosing deep-lying energy minima. We extract the local densities of states and of minima, and the number of states and minima accessible below a certain energy barrier, the 'lid'. These quantities show on average a close to exponential growth as a function of their respective arguments. We calculate the configurational entropy for these pockets of states and find that the excess specific heat exhibits a peak at a critical temperature associated with the exponential growth in the local density of states, a feature of the specific heat also observed in real glasses at the glass transition.Comment: RevTeX, 19 pages, 7 figure

    A soluble model of evolution and extinction dynamics in a rugged fitness landscape

    Get PDF
    We consider a continuum version of a previously introduced and numerically studied model of macroevolution (PRL 75, 2055, (1995)) in which agents evolve by an optimization process in a rugged fitness landscape and die due to their competitive interactions. We first formulate dynamical equations for the fitness distribution and the survival probability. Secondly we analytically derive the t−2t^{-2} law which characterizes the life time distribution of biological genera. Thirdly we discuss other dynamical properties of the model such as the rate of extinction and conclude with a brief discussion.Comment: 6 pages LaTeX source with 2 figures. Submitted to PRL (Jan. 97

    Mean-field theory of temperature cycling experiments in spin-glasses

    Full text link
    We study analytically the effect of temperature cyclings in mean-field spin-glasses. In accordance with real experiments, we obtain a strong reinitialization of the dynamics on decreasing the temperature combined with memory effects when the original high temperature is restored. The same calculation applied to mean-field models of structural glasses shows no such reinitialization, again in accordance with experiments. In this context, we derive some relations between experimentally accessible quantities and propose new experimental protocols. Finally, we briefly discuss the effect of field cyclings during isothermal aging.Comment: Some misprints corrected, references updated, final version to apper in PR

    Record dynamics of evolving metastable systems: theory and applications

    Get PDF
    Record Dynamics (RD) deals with complex systems evolving through a sequence of metastable stages. These are macroscopically distinguishable and appear stationary, except for the sudden and rapid changes, called quakes, which induce the transitions from one stage to the next. This phenomenology is well known in physics as “physical aging”, but from the vantage point of RD, the evolution of a class of systems of physical, biological, and cultural origin is rooted in a hierarchically structured configuration space and can, therefore, be analyzed by similar statistical tools. This colloquium paper strives to present in a coherent fashion methods and ideas that have gradually evolved over time. To this end, it first describes the differences and similarities between RD and two widespread paradigms of complex dynamics, Self-Organized Criticality and Continuous Time Random Walks. It then outlines the Poissonian nature of records events in white noise time-series, and connects it to the statistics of quakes in metastable hierarchical systems, arguing that the relaxation effects of quakes can generally be described by power laws unrelated to criticality. Several different applications of RD have been developed over the years. Some of these are described, showing the basic RD hypothesis and how the log-time homogeneity of quake dynamics, can be empirically verified in a given context. The discussion summarizes the paper and briefly mentions applications not discussed in detail. Finally, the outlook points to possible improvements and to new areas of research where RD could be of use

    Evolution on a Rugged Landscape:Pinning and Aging

    Full text link
    Population dynamics on a rugged landscape is studied analytically and numerically within a simple discrete model for evolution of N individuals in one-dimensional fitness space. We reduce the set of master equations to a single Fokker-Plank equation which allows us to describe the dynamics of the population in terms of thermo-activated Langevin diffusion of a single particle in a specific random potential. We found that the randomness in the mutation rate leads to pinning of the population and on average to a logarithmic slowdown of the evolution, resembling aging phenomenon in spin glass systems. In contrast, the randomness in the replication rate turns out to be irrelevant for evolution in the long-time limit as it is smoothed out by increasing ``evolution temperature''. The analytic results are in a good agreement with numerical simulations.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Records in a changing world

    Full text link
    In the context of this paper, a record is an entry in a sequence of random variables (RV's) that is larger or smaller than all previous entries. After a brief review of the classic theory of records, which is largely restricted to sequences of independent and identically distributed (i.i.d.) RV's, new results for sequences of independent RV's with distributions that broaden or sharpen with time are presented. In particular, we show that when the width of the distribution grows as a power law in time nn, the mean number of records is asymptotically of order ln⁥n\ln n for distributions with a power law tail (the \textit{Fr\'echet class} of extremal value statistics), of order (ln⁥n)2(\ln n)^2 for distributions of exponential type (\textit{Gumbel class}), and of order n1/(Îœ+1)n^{1/(\nu+1)} for distributions of bounded support (\textit{Weibull class}), where the exponent Îœ\nu describes the behaviour of the distribution at the upper (or lower) boundary. Simulations are presented which indicate that, in contrast to the i.i.d. case, the sequence of record breaking events is correlated in such a way that the variance of the number of records is asymptotically smaller than the mean.Comment: 12 pages, 2 figure
    • 

    corecore