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Abstract. Record Dynamics (RD) deals with complex systems evolving through a sequence of metastable
stages. These are macroscopically distinguishable and appear stationary, except for the sudden and rapid
changes, called quakes, which induce the transitions from one stage to the next. This phenomenology is
well known in physics as “physical aging”, but from the vantage point of RD, the evolution of a class of
systems of physical, biological, and cultural origin is rooted in a hierarchically structured configuration
space and can, therefore, be analyzed by similar statistical tools. This colloquium paper strives to present
in a coherent fashion methods and ideas that have gradually evolved over time. To this end, it first
describes the differences and similarities between RD and two widespread paradigms of complex dynamics,
Self-Organized Criticality and Continuous Time Random Walks. It then outlines the Poissonian nature
of records events in white noise time-series, and connects it to the statistics of quakes in metastable
hierarchical systems, arguing that the relaxation effects of quakes can generally be described by power
laws unrelated to criticality. Several different applications of RD have been developed over the years.
Some of these are described, showing the basic RD hypothesis and how the log-time homogeneity of quake
dynamics, can be empirically verified in a given context. The discussion summarizes the paper and briefly
mentions applications not discussed in detail. Finally, the outlook points to possible improvements and to
new areas of research where RD could be of use.

1 Introduction

Simply stated, the founding axiom of equilibrium sta-
tistical physics is ‘all micro-states are equally probable
in a thermally isolated system’. More recent, coarse-
graining criteria are of less sweeping generality. Mori–
Zwanzig projections, for example, aim to eliminate fast
variables from a set of interacting degrees of freedom
(DoF), while diffusion offers a probabilistic description
of the configuration space movement of particles subject
to external white noise. In the same configuration space,
but describing a non-equilibrium process, Continuous
Time Random Walks [1,2] (CTRW) jump through a
sequence of ‘traps’, each representing an attractor of
the system’s noiseless dynamics. Importantly, choosing
the Probability Density Function (PDF) of the jump
times to be a power law allows one to describe, e.g. sub-
diffusive behavior. While power laws are telltale signs of
complex structure, present, e.g. at the critical temper-
ature of systems undergoing a second-order phase tran-
sition, their microscopic origin is not a focus point of
CTRW. Instead, they are assumed a priori, in the form
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of the PDF. Self-Organized Criticality [3,4] posits that
a seemingly similar behavior is shared by certain sys-
tems which spontaneously organize into a critical-like
state, with no tunable external parameters but while
being slowly driven. Finally, diffusion in hierarchically
organized spaces [5–7] generates power-law relaxation
laws with no reference to equilibrium properties, e.g.
critical points. In summary, there is a wide range of non-
equilibrium behaviors in systems with many interacting
degrees of freedom, for which there are often compet-
ing statistical descriptions that all rely on simplifying
assumptions and heuristic coarse-graining tools.

The statistics of extreme events is a subject with
a long tradition. and many applications. Gumbel [8]
famously studied the distribution of the largest out
of M independent identically distributed random vari-
ables (i.i.d.). This statistics of extremes finds its place in
standard text books, such as [9] and [10], leading to on-
going studies into so-called “extreme-value statistics”
and their universality classes [11,12]. In [13], the focus is
on the average and variance of the number of records in
time-series of i.i.d. deviates whose distribution changes
in time. The properties of the record series have thus
implications regarding the series from which the records
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are extracted. E.g. deviations from the expected, inde-
pendent production of records in a time-series can be
used to analyze hidden correlations. This has been
applied to sports and climate data, or evolution [14–16].
Recent progress in record statistics and its applications
is discussed in [17]. In Record Dynamics (RD), record
fluctuations of a locally stationary signal, e.g. thermal
noise, trigger macroscopic changes in metastable sys-
tems. The magnitude of these changes is linked to con-
figuration space properties, e.g. the hierarchical barrier
structure of the energy landscape, rather than the size
of the records. We are, therefore, interested in tempo-
ral properties, such as the PDF of the waiting time
for the next record in time-series of i.i.d., e.g. energy
fluctuations in thermalized systems. The number of
records in such time-series is, to a good approximation,
(log)Poisson distributed; see Eq. (8) and Fig. 3.

RD treats metastable systems evolving through a
sequence of ‘punctuated equilibria’, a term invented by
Gould [18] in a macro-evolutionary context. As we have
argued extensively [19], the same term also describes
situations lacking time-translational invariance and is
used here in this more general sense. Sudden events,
or ‘punctuations’, which are clearly distinguishable
from reversible fluctuations, lead from one metastable
(pseudo-equilibrium) state to the next, and control
all macroscopic changes. The waiting times for these
de-facto irreversible events, dubbed ‘quakes’, all have
expectation values which are finite, but increase mono-
tonically as the system ‘ages’ out of its initial state. The
statistics of quakes provides a coarse-grained descrip-
tion of the multi-scale behavior characteristic of com-
plex systems, including the presence of power laws for
one and two point moments in the range of parameters
specifying the system’s glassy state. The strong dynam-
ical similarities of very different metastable systems are
highlighted here by treating each of them with the same
RD techniques. The reader is referred to the literature
for more detailed descriptions of the cases presented.

The rest of this paper is organized as follows: Sec-
tion 2 relates RD to Self-Organized Criticality and
to diffusion in hierarchical spaces. Section 3 summa-
rizes mathematical assumptions and predictions and
describes the techniques used to extract the quakes and
their statistics from available data. Section 4 reviews a
number of applications to observational, experimental
and simulational data, and Sect. 5 summarizes the pre-
sentation and mentions possible RD extensions.

Finally, the figures included come from works pub-
lished over many years. The notation has evolved during
this period, and we hope in the reader’s understanding
regarding the consequent non-uniform notation, mainly
in the figures and their captions

2 Background

The configuration space of a metastable system com-
prises many ergodic components differing in terms of
macroscopic observables [20]. Reversible fluctuations

occur within the components, while transitions from
one component to another require crossing sizeable free-
energy barriers, which may differ for a transition and
its reverse. If, within a certain observation time, typ-
ical equilibrium fluctuations can trigger a transition
one way but not the other, this transition is de-facto
irreversible. Irreversible transitions violate detailed bal-
ance and their introduction would preclude an accu-
rate description of near-equilibrium states. In contrast,
de-facto irreversible transitions become reversible over
time. In a system with a continuum of barrier heights,
increasingly many barriers are crossed reversibly and
ergodic components grow in size as the system evolves
out of its initial state. This situation typically occurs
whenever the initial quench generates a marginally sta-
ble, i.e. a metastable state far from equilibrium stabi-
lized by rather small barriers.

Self-Organized Criticality (SOC) and hierarchical dif-
fusion models [6,7,21] focus on different aspects of the
dynamics out of marginally stable states. Specifically,
SOC describes stationary fluctuations of driven sys-
tems, while RD is inherently non-stationary. Never-
theless, RD shares conceptual aspects with both SOC
and hierarchical diffusion, but unlike them uses de-facto
irreversibility to treat barrier crossings as a log-Poisson
process. This provides an empirically verifiable coarse-
graining tool leading to analytical predictions.

Below, we briefly discuss key modeling properties of
SOC and diffusion in hierarchies with focus on their
relation to RD. The statistics of records is dealt with in
the next section. Importantly, experimental or numeri-
cal data usually do not directly deliver a series of record
events. Instead, anomalous events, the quakes, must be
identified which allegedly correspond to transitions to
new ergodic components. The final step is to verify that
these quakes are described by record statistics, in short
that they constitute a Poisson process whose average
has a logarithmic time dependence. Several examples
are given in Sect. 4.

2.1 SOC and RD

Self-Organized Criticality (SOC) is a coarse-grained
description of slowly driven, spatially extended systems
with a large number of interacting degrees of freedom,
e.g. famously, the sand pile model [3]. In an SOC envis-
aged sandpile, grains of sand are added, one at the time,
eventually leading to a metastable situation when the
local slope of the pile exceeds its angle of repose. At
some later time, an avalanche occurs to restore the sta-
bility, or, rather, the marginal stability of the pile. SOC
macroscopic dynamics is thus described by avalanches,
which expectedly have a broad distribution of sizes and
of inter-event times. The metastable states are highly
susceptible, similar to critical states, in that a small
perturbation, i.e. adding a grain of sand, can elicit a
large response, like an avalanche.

This section will not dwell on the large literature gen-
erated by the SOC paradigm, see [22] and references
therein, but will instead take one step back in time to
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highlight the origin of some key ideas that SOC and RD
do share. Our starting point, to which we refer for more
details, is a paper by Tang, Wiesenfeld, Bak, Copper-
smith, and Littlewood [23], for short TWBCL, predat-
ing the sand pile model [3]. The TWBCL model con-
siders a linear array of displacements yj of N identical
masses, each elastically coupled to its nearest neigh-
bors and subject to friction. The array moves in a sinu-
soidal potential, driven by a train of square wave pulses.
In the limit of weak elastic couplings and high ampli-
tude of the square wave pulses, the periodic solutions
of the problem are characterized by the curvature C(n)
of the array y(n) at each (integer) time n right before
the n + 1 pulse begins. In a metastable state, C does
not depend on n. As TWBCL point out, all metastable
states lie in an N -dimensional hypercube, centered at
the origin. A randomly chosen initial state will move
toward the origin, but will stick to the surface of the
hypercube, once it gets there. Importantly, the initial
configurations sufficiently far from the surface invari-
ably end sticking at the corners of the hypercube. The
states picked are minimally stable, and are akin to the
metastable states of the sandpile. Since the dynamics
is purely deterministic, stable states in the interior of
the hypercube are never accessed. Adding white noise
to the dynamics allows the system to relax logarithmi-
cally toward the center [21].

In terms of concepts laid out by TWBCL, the dif-
ference between SOC and RD is that the former con-
siders jumps between corner states, induced by exter-
nal driving but free of internal fluctuations, while the
latter describes the slow-aging process which follows
from random fluctuations by coupling to a heat bath
or some other form of external noise. TWBCL high-
lights the presence of hierarchies of attractors and that
processes not described by equilibrium considerations
are key elements of the dynamics. Reference [24] on
‘noise adaptation’ uses a simple model with a hierarchy
of attractors of different stability to show how white
noise of bounded amplitude selects marginally stable
attractors which cannot be escaped without infinitesi-
mally increasing the noise amplitude. If the latter does
not have bounded support, e.g. for Gaussian noise, this
translates into an increasing stability of marginally sta-
ble attractors, which is a feature of RD.

2.2 Hierarchies and RD

The connection between complexity and hierarchies was
emphasized long ago by Simon [25] in his seminal essay
‘The Architecture of Complexity’. Simon defines a hier-
archy as a system composed of subsystems, each again
composed of subsystems, etc., as in a set of Russian
Matryoshka dolls. Many physical, biological, and social
systems conform to this paradigm. In any case, a pro-
cess initiated within a sub-unit must, in the short run,
remain confined to that sub-unit, and only in the long
run, it is able to affect the whole structure. The dynam-
ics is then nearly decomposable. Furthermore, the hier-
archical structure of the system implies that the prop-

agation of an initially localized perturbation is a decel-
erating multi-scaled relaxation process.

As shown in Sect. 4.3, the hierarchical nature of com-
plex relaxation can already be inferred from cleverly
designed experiments. It can, however, also be directly
ascertained from studying numerical models: using the
lid method [26], all microscopic configurations of a dis-
crete system whose energies lie between a local energy
minimum and a preset ‘lid’ energy value are enumer-
ated. The master equation for the system can then be
set up and solved numerically, obtaining for each time
t the probability density P (t, x|x0) of finding the sys-
tem in a micro-state x, given a sharp initial condition
at x0. Two micro-states x and y are considered to be
locally equilibrated, if P (t,x)

P (t,y) ≈ exp(E(x)/T )
exp(E(y)/T ) , where near

equality is controlled by a small allowed deviation. All
micro-states can then be grouped into classes. Since the
system will eventually equilibrate, all states will eventu-
ally end up in the same class, and a merging of different
classes can be expected during the time evolution of the
system.

Figure 1, taken from [27], shows what happens when
the procedure is applied to a small instance of the Trav-
eling Salesman Problem, where the tour length plays
the role of energy. Equilibration proceeds in stages, with
different classes merging, but never splitting again. In
the resulting relaxation tree, branches merge at times
nearly uniformly spaced on a logarithmic scale. Con-
sidering the thermally activated nature of the process,
this indicates that the energy barriers allowing different
quasi-equilibrium states to merge are equally spaced on
a linear scale.

To describe thermal relaxation dynamics, the config-
uration space of complex systems can be coarse-grained
in a tree graph [6] of the kind illustrated by Fig. 1 In
RD terminology, the stepwise process of relaxation in
such a hierarchy is controlled by a series of quakes, each
associated with the crossing of a record high barrier,
and each giving access to a hitherto unexplored region
of configuration space. If the barriers are uniformly dis-
tributed on the energy axis, the quakes are uniformly
distributed on a logarithmic time-scale. The simplified
picture sketched above neglects the discrete nature of
the energy barrier structure, but ensures that quaking
is, as assumed by RD, a Poisson process whose average
is proportional to the logarithm of time, for short, a
log-Poisson process.

An alternative description of the nature of the pro-
cesses described with RD is facilitated in terms of (free-
)energy landscapes. As such landscapes are widely used
to conceptualize disordered materials, it further illus-
trates the wide applicability of RD. A relaxing system
is characterized by growing domains, however slowly,
of correlated behavior between DoF. For domains to
grow (in an otherwise finite system), others have to
disappear, a process referred to as “coarsening”. To
overturn such a domain in a complex system requires
crossing an energy barrier. It is known [29] that there
are only two generic scenarios: either barrier energies
grow with the size of the domain to be overturned, or
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Fig. 1 The figure taken from Ref. [27] shows the hierar-
chical structure of relaxation at fixed temperature in the
state space of a Traveling Salesman Problem. Each leaf of
the tree represents a set of states which are in local equilib-
rium with one another at a certain level of approximation
ε. The insert shows how a leaf splits into a whole tree when
a smaller value of ε is chosen. The vertical axis of the tree
is proportional to the logarithm of time: thus, the system
undergoes a series of local equilibrations (= merging of sub-
trees ) at times almost equally spaced on a logarithmic scale

they are independent. In the latter case, average sizes of
the remaining domains grow as a power law with time,
∼ t1/2, but if bigger domains cost ever more energy to
overturn, their growth is merely logarithmic with time,
∼ ln t. While such growth may be hard to observe on
any experimental scale, it still enforces the following
feedback loop: the landscape of such a complex sys-
tem has a hierarchical structure in that, the lower ener-
gies (i.e. larger domains) are reached, the higher the
barriers get, and thus, larger fluctuations are needed
to escape local minima [28]. Such a feedback is absent
in the coarsening of, e.g. an Ising ferromagnet, where
barriers remain independent of domain size, thus, inde-
pendent of the depth within the landscape. (If entropic
effects become relevant [29], like for a structural glass,
the same argument holds for free-energy barriers.)

Hence, RD presupposes three features that are well
established for hierarchical energy landscapes: (1) Meta-
stable states, and thus their combined basin of attrac-
tion, proliferate exponentially for increasing free energy
[30–33]; (2) more-stable (lower energy) states typi-
cally have higher barriers against escaping their basin
[29,33,34]; and (3) higher jumps in energy make expo-
nentially more configurations accessible [7,35]. Such a
landscape is illustrated (as a projection of a configura-
tion space with a large number of DoF) in Fig. 2. In
a quench, the system almost certainly gets stuck ini-
tially in one of the many shallow basin of high energy.
There, a small, random fluctuation already suffices to
escape into a larger basin containing many sub-basins,
some of which feature local minima of lower energy.

Fig. 2 Sketch of the hierarchical (free-)energy landscape
of a complex system in RD, from Ref. [28], with a typi-
cal trajectory of an aging dynamics (blue and red). With
increasing free energy F , local minima proliferate expo-
nentially but also become shallower. After a quench (red-
dashed arrow), the dynamics evolves through a sequence
of quasi-equilibrium explorations (blue) and intermittent,
irreversible quakes over record barriers (red) that access
an exponentially expanding portion of configuration space
(black-dashed arrow)

However, for reaching basins of ever lower energy, grad-
ually, higher fluctuations are required to escape. The
gain in stability acquired in any one of these escapes
will most probably only be marginal, since sponta-
neously finding minima of dramatically lower energy
would be exponentially unlikely. The motion in and out
of states less stable than the current basin only pro-
vides reversible quasi-equilibrium fluctuations. For an
irreversible quake, typically, only a rare record fluctu-
ation in the noise impinging on the system will suffice
[24], whether it is in a spin glass [36,37], in a colloidal
glass [28,38,39], or even in a athermal (tapped) gran-
ular pile [40]. RD, hence, offers an analytic in-road to
coarse-grained descriptions that bridge the aging phe-
nomenology. This approximation supersedes the par-
ticular properties of the hierarchy of barriers in a given
system, e.g. small differences in energy or density, or
some microscopic details. As long as such a hierarchy
exists [7,34,41–47], i.e. the system is actually jammed,
microscopic distinctions only vary by an overall unit of
time.

The examples presented in the following show how
the toy pictures just discussed must be nuanced.
A hierarchical barrier structure captures nevertheless
metastability and is thus a prerequisite for RD to be
applicable.

3 Mathematical backbone

A stationary time-series of, e.g. measured temperature
values in a thermostated system qualifies as white noise
if successive measurements are statistically indepen-
dent, which can be achieved by taking them sufficiently
far apart. As will become apparent, the statistics of
records is independent of the mechanism generating the
noise. In particular, it is independent of temperature
in the case of temperature records in thermal fluctua-
tions. The universality of record statistics lies behind

123



Eur. Phys. J. B           (2021)  94:37 Page 5 of 23    37 

the shared phenomenology of microscopically very dif-
ferent metastable systems which experience punctuated
equilibria. Below, the mathematical properties of record
statistics are highlighted which can be easily extracted
from time-series of experimental, observational, or sim-
ulational data.

Consider a stationary series Sk, k = 0, 1 . . . of sta-
tistically independent and identically distributed scalar
random variables, so-called white noise. We assume
that the distribution is not supported on a finite set. By
definition, the first entry of the series is a record. Other
entries are records if and only if they are larger than the
previous record. Memory of each record is maintained
by an algorithm, and the issue of how record fluctua-
tions can leave an indelible mark in the evolution of a
physical system does not arise in this connection.

Record-sized entries within form a sub-series R ⊂ S
whose interesting statistical properties follow from sim-
ple arguments [24,48–50]: as it gets increasingly harder
for an entry to qualify as the next record, records
appear at a decreasing rate and the sub-series of record-
sized entries is not stationary. The number of records
in the time interval (1, t) is to a good approximation a
Poisson process with average ln t. Equivalently, if the
kth record appears at times tk, the ratios ln(tk/tk−1)
are independent random variables with an exponential
distribution. The above properties are derived using
heuristic approximations, and their validity is checked
numerically.

3.1 Record statistics in white noise

Denote by pn(l, [0, m1 . . .mn]) the probability that n
records are located at entries 0, m1, . . . , mn of the series
S, and let Pn(l) be the probability that n out of the
l + 1 entries are records, regardless of their location.
Clearly, in the case n = 1, the first entry must be the
largest. As the largest entry can be anywhere with equal
probability:

P1(l)
def= p1(l, [0]) =

1
l + 1

, l = 0, 1 . . .∞, (1)

is the probability of finding precisely one record in the
first l + 1 elements of the series. For two records, one
occurring at 0 and the other at m1 ≤ l, we find:

p2(l, [0, m1]) =
1

m1

1
l + 1

, 1 ≤ m1 ≤ l. (2)

The first factor on the r.h.s. of the equation is the prob-
ability that the zeroth element is the largest of the first
m1 entries, and the second is the probability that the
largest element of the whole series be located at m1.
The probability that exactly two out of l + 1 elements
are records is then:

P2(l) =
1

l + 1

l∑

m1=1

1
m1

=
Hl

l + 1
, (3)

where the harmonic number Hl =
∑l

k=1 1/k satisfies:

Hl = ln(l + 1) + γ + O(l−1) (4)

with γ = 0.57721 . . . being the Euler–Mascheroni con-
stant. Turning now to an arbitrary n, we find, by the
same arguments:

pn(l, [0, m1, m2, . . .mn−1]) =
1

l + 1

n−1∏

k=1

1
mk

, (5)

with; 1 ≤ m1; mk−1 < mk; mn−1 ≤ l. (6)

To obtain Pn(l), the distribution pn(l, [0, m1, m2,
. . . mn−1]) must be summed over all possible values of
m1, m2 . . . mn−1. Unfortunately, a closed form expres-
sion can only be obtained in the continuum limit, where
all sums turn into integrals.

To carry out the needed approximation, assume that
S is obtained by sampling a stationary signal at regu-
lar intervals of duration δt. Furthermore, let tk

def= mkδt

and t
def= lδt be the time of occurrence of the kth record

in the series, and the total observation time, respec-
tively. Noting that mk = tk/δt, and taking the limit
δt → 0, we find:

Pn(t) =
1
t

∫ t

tn−2

dtn−1

tn−1

2∏

k=n−2

∫ tk+1

tk−1

dtk
tk

∫ t2

1

dt1
t1

. (7)

As the integrand in the above expression is a symmetric
function of the arguments t1, . . . , tn−1, any permutation
of the arguments does not change the integral. Sum-
ming over all permutations of the order n − 1 variables
and dividing by (n−1)! leave the expression unchanged
and yield:

Pn(t) =
1
t

1
(n − 1)!

(∫ t

1

dz

z

)n−1

=
1
t

log(t)n

n!
, n = 0, 1, 2, . . .∞. (8)

In the last expression, which can be recognized as a
Poisson distribution with expectation value:

μn(t) = log(t), (9)

the convention that the first entry is always a record is
abandoned for convenience. As well known, the variance
of the process equals its mean, σ2(t) = μn(t).

Clearly, the number of records falling between times
tw and t > tw is the difference of two Poisson pro-
cess, and hence itself a Poisson process with expecta-
tion μn(tw, t) = ln(t) − ln(tw) = ln(t/tw). The average
number of records per unit of time decays as:

dμn(t)
dt

def=
1
t
. (10)
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Importantly, the logarithmic rate of events is constant,
and the transformation t → ln t renders the series R
memoryless and translationally invariant.

A Poisson process is uniquely characterized by the
exponential PDF of the waiting time to the next event.
In our case, Eq. (8) implies that ln t plays the role of
time variable, which brings our focus on the logarithmic
waiting time between successive events, the kth waiting
time being Δtk

= ln tk − ln tk−1 = ln(tk+1/tk), k ≥ 1.
The Δtk

are independent of k and exponentially dis-
tributed with unit average. Their exponential PDF is
thus:

FΔln t(x) = Prob(Δln t < x) = exp(−x), (11)

where k has been dropped from the notation. Finally,
since

τk =
k−1∑

i=0

Δti (12)

is a sum of k independent exponential variables with
unit average, it follows that τk is Gamma distributed,
with density given by:

Pτk
(t) =

tk−1

(k − 1)!
e−t. (13)

For large k, the Gamma distribution can be approxi-
mated by a Gaussian, and the waiting time tk is, there-
fore, approximately log-normal.

To justify the mathematical approximations behind
Eq. (8), i.e. mainly replacing sums with integrals, we
consider 500 series each comprising 50000 independent
Gaussian deviates with zero mean and unit variance. To
create a time variable, time intervals between the adja-
cent elements of each series are drawn from a uniform
distribution in the unit interval. The actual record sub-
sequences of each stationary time-series are extracted
and analyzed statistically. Figure 3 shows that the log
waiting times are exponentially distributed, as claimed.
The insert shows that the average and variance of the
number of records are nearly proportional to the loga-
rithm of time, in fair agreement with Eq. (9).

To conclude, the properties of record statistics of
noisy data are expectedly quite general, as the noise
statistics does not enter, with exception of the inde-
pendence of successive noise events.

3.2 Quake statistics in real data

In applications, the time-series S will often be a physical
signal describing pseudo-equilibrium fluctuations, e.g.
energy fluctuations at constant temperature. The sub-
sequence R is not directly available as record signal,
but is extracted from S by heuristically identifying the
anomalous events, or quakes, leading from one pseudo-
equilibrium state to the next. A statistical analysis is

Fig. 3 The circles show the unnormalized distribution of
log-waiting times in a record sub-series. The hatched line is
the exponential fit given in the figure text. The insert shows
the mean and variance (blue and red dots) of the number of
records vs. the logarithm of time. The hatched line has unit
slope. The statistics describes records in white noise time-
series, constructed from independent Gaussian deviates, as
explained in the main text

then used to ascertain if R behaves as the record signal
of S.

The analysis must consider the spatial structure from
which the signal originates. A spatially extended system
with a finite correlation length can be treated as com-
posed of M dynamically independent domains, with M
proportional to the system’s size. If quakes within each
domain are a record signal, their average and variance
will both grow as M ln t. Correspondingly, the logarith-
mic rate of quakes will be rlt = M . In a time-series com-
prising all quakes, the log-waiting times between succes-
sive events will mix inputs from different domains and
their PDF will not be given by FΔln t(x) = exp(−Mx).
Equation (11) is only valid when the log-waiting times
ln tk − ln tk−1 are constructed from quakes occurring in
the same domain. If this spatial distinction is neglected,
the time differences tk − tk−1 rather than the logarith-
mic time differences ln tk/tk−1 will be exponentially
distributed. This property allows one to estimate the
domain size as the largest spatial domain from whose
dynamical data comply with Eq. (11), see, e.g. [51].

3.3 Power laws from RD

Power laws express an underlying scale invariance and
are naturally connected to critical behavior. In some
cases, however, scale invariance is not associated with
length scales in real space, but with free-energy scales in
configuration space. To be concrete, thermal relaxation
in a self-similar energy landscape with valleys within
valleys, as in Fig. 2, on all scales is described by power
laws [5–7] over a range of temperatures extending from
zero up to a critical value [52].
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RD is a coarse-grained description of relaxation in
a hierarchy, and produces power laws with no connec-
tion to criticality. The details can differ, but stem in all
applications from log-time homogeneity. Since we will
show below that RD is a log-Poisson process, we con-
sider its effects on different observables without further
ado here. The first example, further discussed in 4.1.3,
is the survival probability P (t|tw) that a species extant
at time tw is still extant at t > tw, where times are mea-
sured in a suitable unit. A natural assumption is that
each quake impinging on the system reduces the sur-
vival probability by the same factor, i.e. as a function
of the number n of quakes:

P (n) = xn, (14)

with 0 < x < 1. To extract a time dependence, the
expression must be averaged over the Poisson distribu-
tion of the number of quakes falling in the observation
interval (tw, t). With the constant logarithmic quaking
rate coefficient denoted by rq, this yields:

P (t|tw) =
(

t

tw

)−rq ∞∑

n=0

(xrq ln(t/tw))n

n!

=
(

t

tw

)−rq(1−x)

. (15)

This is an example of pure aging and of a power law
whose exponent λ = −rq(1 − x) is unrelated to critical
behavior.

Consider now the coarse-grained autocorrelation func-
tion of, say, the energy, between times tw and t. Because
of log-time homogeneity, it has the generic form [37]:

CE(t, tw)=σ2
∑

k

wkeλk(ln t−ln tw)=σ2
∑

k

wk

(
t

tw

)λk

,

(16)

where λk < 0 are the eigenvalues of the (unknown)
master equation describing the process and wk > 0 are
the corresponding positive spectral weights.

4 Applications

4.1 Punctuated equilibrium and ecosystem
dynamics

Gould and Eldredge first suggested [53] and then vigor-
ously argued [54,55] that the abrupt changes observed
in the fossil record, i.e. mass extinctions, are a sig-
nificant mode of evolution, rather than the outcome
of random fluctuations. Their thesis, dubbed Punctu-
ated Equilibrium, is reconciled with Darwinian phyletic
gradualism in Stephen J. Gould’s opus magnum [56],
The Structure of Evolutionary Theory.

Raup and Sepkoski [57] analyzed mass extinctions in
the marine fossil record and proposed that the apparent
decline in their rate since the Cambrian explosion was
the consequence of an on-going optimization process.
This idea was later taken up in [49,58], where extinction
events were described in terms of jumps in a rugged
fitness landscape, and the decay was linked to record
statistics.

Newman and Eble [59] showed that the decline in
the extinction rate during the Phanerozoic is accurately
described by a logarithmic increase of the cumulated
number of extinct families vs. time, measured since
the Vendian–Cambrian boundary at about 544 Ma.
This observation, we now belatedly realize, fully con-
curs with an RD description of the evolution process.
Newman and Eble’s analysis is discussed in more detail
in the next section.

Punctuated equilibrium has also been interpreted
[60,61] as a manifestation of Self-Organized Criticality,
originally a stationary paradigm for complex behavior
of slowly driven systems [62]. Along this line, Bak and
Sneppen [60] use a simple and elegant model, where
a set of “species” comprises an array of random num-
bers between zero and one, each considered to be a
fitness measure. Each species interacts with neighbors,
say two neighbors for simplicity. The dynamics iter-
ates two steps: a removal of the species with the lowest
fitness and its two neighbors, followed by the replace-
ment of the removed, i.e. “extinct ”, species with three
new randomly drawn numbers. The removal of the
two neighbors represents the interdependence between
co-evolving species. Note that the number of species
remains constant in time.

The model soon enters a state in which the fitness
values of extant species are mainly concentrated above
a certain threshold value. Every so often, a newly intro-
duced species will possess a fitness below this threshold
and a burst of extinctions occurs until all fitness val-
ues have returned above the threshold. The number of
extinction and replacement events needed to return the
system above threshold has a broad distribution, and
in this sense, the model exhibits features of SOC.

Whether the Bak–Sneppen model exhibits punctu-
ated equilibrium or not is in the eyes of the beholder.
The extinction and renewal activity is always occur-
ring at the same rate, namely one, the species of low-
est fitness, plus the assumed number of its neighbors,
which is the same for all species. Bak and Sneppen,
however, argued that the real evolutionary time-scale
is not given directly by the updates, but is an expo-
nential function of how far below the threshold a given
lowest fitness value is. As the update activity is consid-
ered on this supposedly true macroscopic time, punctu-
ation is introduced because of the assumed exponential
blow up. It is perhaps not entirely satisfactory that the
main feature the model is supposed to reproduce hinges
on an exponential relation to blow up the waiting time
between abrupt events. Such a relationship is seen in
thermal activation over energy barriers, although being
far below the threshold should produce a faster rather
than slower return to average behavior.
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Fig. 4 Main figure: the cumulative extinction intensity as
a function of time during the Phanerozoic on linear–log
scales. The straight line is the best logarithmic fit to the
data. Inset: the same data on log–log scales. Figure taken
from Newman and Eble [59]

In the following, we discuss evolution processes with
very different time-scales involving the fossil record,
bacterial cultures in a flask, a model of ecosystem evolu-
tion, and the sequence of exit times of ants from their
nest. In the last case, both observational data and a
model linking them to spatial rearrangements of inter-
acting ants are discussed.

4.1.1 Macro-evolution and the fossil record

The analysis by Newman and Eble [59] of marine fami-
lies extinction, on which this section is based and from
which Fig. 4 is taken, argues that species extinction is a
decelerating process, and suggests a date at which this
process began, i.e. 260 My before the Cambrian explo-
sion. We include these important results together with
equally important data from bacterial evolution [63,64],
to highlight the similarity of evolutionary dynamics on
very different time-scales and to suggest an explanation
in terms of RD. The original work should be consulted
for more details.

Figure 4 shows the cumulated number of extinctions
of marine families, as a function of time. The cumulative
extinction appears as a straight line when plotted on
log-linear axes. Note that the time axis is inverted. The
fit provided is of the form:

c(t) = A + B log(t − t0), t > t0, (17)

where the ‘initial time’ is given as t0 = −262 My. The
insert shows that a log–log plot does not lend itself to
a linear fit, and that a power-law description is unsuit-
able.

The fossil record will never provide decades of data on
a scale of million of years. In spite of this obvious limita-
tion, the quality of the fit is confirmed by the presence of

small logarithmic oscillations, and the conclusion that
macro-evolution is not a stationary process, a property
of SOC type models [60,61], seems inescapable.

Without discussing specific dynamical models, we
note that extinction events are macroscopic irreversible
changes whose cumulated number grows logarithmi-
cally in time. Both these properties characterize quakes
in RD and are found in the Tangled Nature Model
described below.

4.1.2 Bacterial populations in a controlled environment

Lenski and Travisano [63] and later Weiser et al. [64]
measured the Malthusian fitness of 12 E. coli popu-
lations grown in a constant physical environment over
10,000 and 50,000 generations, respectively. A genera-
tion begins when a bacterial sample is injected in fresh
substrate and ends when its population reaches its first
plateau. In the experiments, 12 initially identical cul-
tures follow different evolutionary paths, all leading to
increasing cell size and increasing Malthusian fitness,
i.e. initial rate of growth of the population. In the lack
of competition with other organisms, all evolutionary
changes must concern the metabolic pathways needed
to process the substrate. The situation can be modeled
by an adaptive walk on a rugged fitness landscape [65]
where any improvement, i.e. a fitness record, quickly
moves the population to a higher fitness peak [66],
i.e. induces the macroscopic change we presently call
a quake. Assuming that each quake leads to the same
improvement, RD predicts a logarithmic Malthusian
fitness increase of the bacterial populations. Figure 5
depicts the Malthusian fitness of the 12 populations as
dots and their average as circles. The logarithmic trend
of the data is clear. It is equally clear that a logarithmic
trend cannot continue indefinitely and that the growth
law f = f0(1− t−α), where the exponent α is a positive
number close to zero, grows as a logarithm for t 	 1/α
and remains bounded for t → ∞.

In summary, the Malthusian fitness of E. coli evolv-
ing in a fixed environment undergoes a decelerating pro-
cess similar in certain respects to evolution on much
large scales. The situation is well described by the
Kauffman model [65], where the fitness of an individual
is fully determined by its genome. This is the opposite
of the Tangled Nature Model, described below, where
fitness is determined by a tangle of interactions connect-
ing individuals of different species. Interestingly, both
models feature logarithmic growth laws.

4.1.3 A model of ecosystem dynamics

The agent-based Tangled Nature Model [67,68] cap-
tures key elements of ecosystem evolution, includ-
ing punctuated equilibrium [67] and a power-law dis-
tributed life-time of species [69]. Over the last 2
decades, a whole family of Tangled Nature models
appeared, a development recently described in [70],
where applications to different fields of science are
reviewed.
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Fig. 5 The points depict the Malthusian fitness of 12 E.
coli monoculture populations, after an initial change of food
substrate, as a function of logarithmic time, data from Ref.
[64]. Circles are the average fitness of the populations

Closely related to our current RD focus, the model
features qualitative structural changes or quakes which
can be interpreted as extinctions. To a good approxi-
mation, these are uniformly distributed on a logarith-
mic time axis [71], i.e. the logarithmic rate of quakes
is constant, as predicted by RD. Correspondingly, the
integrated number of quakes grows with the logarithm
of time, which concurs with the behavior extracted
from the fossil record [59]. Punctuations, i.e. quakes,
irreversibly disrupt quasi-Evolutionary Stable Strategies
(qESS), periods of metastability where population and
the number of extant species, or diversity, fluctuate
reversibly around fixed values.

The basic model variables are binary strings of length
L, i.e. points of the L-dimensional hypercube. Variously
called species or sites, these are populated by agents or
individuals, which reproduce asexually in a way occa-
sionally affected by random mutations. Only a tiny frac-
tion of the possible sites ever becomes populated dur-
ing simulations lasting up to 1 million generations. The
extant species, i.e. those with non-zero populations at
a given time, are collectively referred to as ecosystem,
and their number as diversity. Unlike, e.g. the Kauff-
man model [65], an agent’s reproductive success is not
predicated on its genome, but on the interactions, or
couplings, it has with other agents.

How agent b affects the reproductive ability of agent
a and vice versa only depends on the species to which
these agents belong. The interaction is non-zero with
probability θ, in which case the couplings (Jab, Jba)
are extracted, once and for all, from a distribution well
described by the Laplace double exponential density
p(x) = 1

2ae−|x−x|/a. For the data shown, the parameters
x and a are estimated to −0.0019 and 0.0111, respec-
tively. Note that the long-term dynamics of the model
strongly depends on the coupling distribution having
finite or infinite support (see Refs. [69,71] for further
details).

The set of interactions linking an individual to others
is key to its reproductive success and arguably consti-
tutes its most important property. Yet, in many studies,
e.g. [71–73], the interactions of an individual and those
of its mutated offspring are unrelated, a rather unreal-
istic feature corresponding to a point mutation turning
a giraffe into an elephant.

This issue has been addressed [74,75] by introducing
correlated interactions between parent and offspring.
More recently, a family of models was introduced [69],
parameterized by a positive integer K, where K = 1 is
the original version, with uncorrelated interactions, and
where the degree of correlation grows with K. The main
effect of correlated interaction is seen in the species sur-
vival probability, described in Fig. 8.

Let S, Nb(t), and N denote the ecosystem, the popu-
lation size of species b, and the total population N(t) =∑

b Nb(t). An individual of type a is chosen for repro-
duction with probability na = Na/N , and succeeds
with probability poff(a) = 1/(1 + e−Ha), where:

Ha(t) = −μN(t) +
∑

b

jab(t), (18)

and where:

jab =
Nb

N
Jab = Jabnb (19)

is a density weighted coupling. In Eq. (18), μ is a posi-
tive constant which represents the finiteness of resource
availability curbing population growth. Letting pmut be
the mutation probability per bit, parent and offspring
differ by k bits with probability Bin(k; K, pmut), the
binomial distribution. Death occurs with probability
pkill and time is given in generations, each equal to the
number of updates needed for all extant individuals to
die. Thus, with population N at the end of the pre-
ceding generation, the upcoming generation comprises
Npkill updates. The parameters used are always L = 20,
μ = 0.10, θ = 0.25, pkill = 0.20, and pmut = 0.01,
and the initial condition invariably consists of a single
species populated with 500 individuals.

The concepts of core and cloud species are key to
define quakes and understand the entropic mechanism
causing the increasing duration of the qESS. A core is a
group of species linked by mutualistic interactions. As
a consequence, the majority of the agents resides in the
core. The cloud consists of many species, each having
few individuals, often mutants of core species.

A quake is an event which rapidly changes the compo-
sition of the core, e.g. by replacing some or all its com-
ponent species. The event is initiated by a new mutant
cloud species which receives strong positive interactions
from the core. As a consequence, it enjoys great repro-
ductive success and its growing population destabilizes
the core via the global negative feedback associated
with the μ term of Eq. (18).

The growing duration of qESS reflects an entrench-
ment into metastable configuration space components
of increasing entropy: it becomes increasingly difficult

123



   37 Page 10 of 23 Eur. Phys. J. B           (2021) 94:37 

Fig. 6 A qualitative view of the evolution of a system ecol-
ogy. Each extant species is represented by a black point at
the integer value corresponding to its binary string. The
abscissa is time. Long periods of stability are punctuated
by rapid changes of the extant population. Figure taken
from [70]

to generate by mutations a new cloud species able to
threaten the core. The step requires an increasing num-
ber of mutations as the system ages.

In the main panel of Fig. 7, the logarithmic wait-
ing times log(tquake/tw) for quakes falling after time
tw, averaged over an ensemble of 2022 repetitions, are
plotted vs. tw with 1σ error bars. These average log-
waiting times are seen to be nearly independent of tw,
which indicates that quake dynamics is log-time homo-
geneous, as RD posits. The insert shows the average
Hamming distance between cloud species and the most
populous core species. The distance grows as the loga-
rithm of time, which implies that core mutants become
on average gradually less fit, and more mutations are
needed to generate a viable mutant which can destabi-
lize the core. Agents die at a constant rate, and have
a finite expected life-time. In contrast, as we shall see,
species go extinct at a decelerating rate, and their life-
times do not possess finite averages.

A cohort is defined as the set of species extant at
time tw and their persistence P (tw, t) as the fraction
of the cohort still extant at time t > tw. Persistence
provides an estimate of the probability that a species
extant at time tw still is extant at later times. The
distinction between the two quantities is glossed over in
the following. The life-time probability density function
of a species extant at tw is then:

S(tw, τ) = − d
dτ

P (tw, tw + τ) 0 ≤ τ < ∞. (20)

Figure 8, taken from Ref. [69], shows that persistence
data obtained for different tw collapse when plotted as
function of t/tw, a so-called pure aging behavior. The

Fig. 7 Main plot: the average logarithmic waiting time
log(tquake/tw) is estimated using 2022 trajectories and plot-
ted (black) vs. tw, with 1σ statistical error bars. The blue
circles, green diamonds, and red squares are based on dif-
ferent sub-samplings and illustrate the statistical variation
of the data. Insert: Hamming distance from cloud species
to the most populous core species, plotted on a log scale
and averaged twice: over the cloud species and over 2022
trajectories. Figure taken from [71]

two data sets describe models with uncorrelated and
correlated interactions between parent and offspring
(K = 1 and K = 5, respectively.) As expected, inheri-
tance of interactions leads to higher persistence.

The lines are fits to a power law y(t/tw) = a(t/tw)b,
For K = 1, the exponent is b = −0.283(14), and for
K = 5, it is b = −0.117(6). The behavior is as pre-
dicted by RD, see, e.g. Eq. (15). Three comments are in
order: first, independently of the degree of inheritance,
Eq. (20) shows that the life-time distribution lacks a
finite average. Second, we see that species created at a
late stage of the evolution process (large tw) are more
resilient than those created early on, implying that the
rate of quakes decreases in time. Third, the exponent of
the persistence decay is more than halved when K goes
from 1 to 5, clearly showing that inheritance produces
a more robust ecology where species live longer.

4.1.4 Movement in ant colonies

That biological systems comprising many interacting
agents evolve through punctuations is not narrowly
dependent on the type of interaction. Social interac-
tions in ant colonies of Temnothorax albipennis seem to
generate the non-stationary ant motion behavior stud-
ied by Richardson et al. [76] and described by an RD
analysis of statistical data. Figure 9 is taken from this
reference, which should be consulted for further details.
Importantly, the analysis of [76] is based on observa-
tional data and hence independent of modeling assump-
tions. A theoretical model of the same phenomenology
[77] is also discussed below.

In the experiment, 15 T. albipennis colonies were
housed in cardboard nests kept at a constant temper-
ature (24 ◦C), with continuous lighting. All colonies
hosted a queen and had a complement of brood at var-
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Fig. 8 Species persistence data plotted as a function of
t/tw. K = 1 data are shown by squares, and K = 5 data
by circles. The lines are least-squares fits to power laws y =
a(t/tw)b. where b = −0.283(14) and b = −0.117(6) for K =
1 and K = 5, respectively. All available cohorts have been
used in the fits. Figure taken from Ref. [69]

ious stages of development. An ant’s first exit from the
nest was recorded as an event and to ensure that only
first exits were counted the ant was either removed or
allowed to return after all ants were initially tagged and
the tag detected upon exit. The PDF of the logarith-
mic waiting time between successive exits is exponen-
tial, as expected in RD and the cumulated number of
exits grows proportionate to the logarithm of time. This
behavior is shown in Fig. 9 for a number of different
measurements. In the lower right corner of each panel,
NR stands for “Non Removal and R for “Removal”,
which refers to the fate of the ants exiting the nest.

All in all, an RD description of ant movement in T.
albipennis seems reasonably accurate. This conclusion

was challenged by Nouvellet et al. [78], who performed
new experiments where the exit process could more
simply be described by standard Poisson statistics, the
result expected if the ants move randomly and inde-
pendently in and out of their nest. The question is of
course whether the two sets of experiments really were
equivalent [79]. More important from our vantage point
is the mechanism producing the gradual entrenchment
of dynamical trajectories in more long-lived metastable
configurations.

In the model proposed in [77], from which Figs. 10
and 11 are taken, ants of different types move in a
stochastic fashion from one site to a neighboring site
on a finite 2D lattice, similar to an ant’s nest. Each
site corresponds to a small area which can be occupied
by several ants, and one site is designed as exit. The
probability of each move is determined by the changes
of a utility function E it entails. E is a sum of pair-
wise interactions between ants, weighted by distance.
Depending on type, ants can have positive or nega-
tive interactions, meaning that moving closer induces
a positive or negative change δE in the utility func-
tion. A standard Metropolis update algorithm is used
[80] with the probability of carrying out a move given
by min[exp((δE/T ), 1], where the parameter, T , called
‘degree of stochasticity’ (DS) controls the importance
of the interactions, similarly to the temperature in a
physical model. The sign inversion relative to the usual
Metropolis convention implies that movements increas-
ing the utility function are unconditionally accepted.

Since interactions are negligible in the limit T → ∞,
the ants act independently and their movement out of
the nest are a Poisson process in linear time, as observed
by Nouvellet et al. [78]. At low T , the systems enters
a non-stationary regime, where exits can be described
as suggested by Richardson et al. [76]. In model simu-

Fig. 9 The panels show the number of nest exits prior to time t under different conditions versus t on a logarithmic
abscissa. removal (circles) and non-removal. Figure taken from Ref. [76]
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Fig. 10 All data have shown pertain to a system with four
ant types, with one negative and five positive interactions
between different types. The value of the utility function per
ant, averaged over 100 trajectories, is plotted versus time.
The initial configuration is in all cases obtained by randomly
placing the ants on the grid. Figure taken from [77]

lations starting from a random distribution of ants in
the nest, ever larger ant clusters establish themselves
on gradually fewer sites. This in turn creates continu-
ally growing dynamical barriers (e.g. empty sites) for
ants which have not yet joined a cluster. Whether a
similar mechanism involving social structures is at play
in real ant nests remains of course to be seen. Let us
finally note that the size of the barrier scaled during ant
movement was not investigated in [77]. We are there-
fore unable to give a precise definition of quake and use
nest exits as a proxy.

All simulational data presented in Fig. 10 pertain to
a system with four types of ants. The value of the util-
ity function per ant, averaged over 100 trajectories is
plotted vs time (i.e. number of MC sweeps) on a loga-
rithmic scale. For T = 500 and 200, a constant value is
approached. The latter increases as the DS decreases,
since the system’s ability to maximize its utility func-
tion initially improves when lowering T . However, for
T = 5 and T = 10, the average E only grows log-
arithmically without approaching equilibrium. In the
two low T curves, the mean value of the utility func-
tion is seen to increase with T rather than decreasing
as in the stationary regime. This highlights the strong
non-equilibrium nature of the relaxation process.

Figure 11 describes the exit statistics, (corresponding
to quake statistics) in a system with two ant types. At
the kth sweep, the program checks whether motion has
occurred at the site dubbed ‘exit’ and, if so, registers
the corresponding time tk. The simulations, each run-
ning from t = 5 to t = 5 · (1 + 105), are repeated 100
times to improve the statistics. The DS values used in
the simulation are T = 50 and T = 5 in the left and
right panels, respectively. The data shown are statisti-
cally very different in spite of being graphically rather

Fig. 11 Left: the correlation function CΔ(k) for the wait-
ing times between consecutive exit events, plotted vs. k.
The insert shows the cumulative distribution of the waiting
times, plotted on a logarithmic vertical scale. The system
contains two types of ants moving on a grid of linear size 7
with DS parameter is T = 50. Right: same as above, except
that the DS value is here T = 5 and that the correlation and
cumulative distribution are calculated using the log-waiting
times rather than the waiting times. Figure taken from [77]

similar. In the left panel, the waiting times, i.e. the time
differences Δk = tk − tk−1, are analyzed with respect to
their correlation and their distribution. Since the tks are
integer rather than real numbers, the exit process can
never be truly Poissonian. We nevertheless estimate the
normalized correlation function of the Δk’s, averaged
over 100 independent runs. For independent entries, the
latter would equal the Kronecker’s delta CΔ(k) = δk,0.
We furthermore estimate the probability that Δ > x,
as a function of x. For a Poisson process, this prob-
ability decays exponentially in x. The correlation and
probability distribution are plotted in the main figure
and the insert, using a linear and a logarithmic ordi-
nate, respectively. We see that short waiting times, i.e.
Δks, of order one are over-represented relative to the
straight line representing the Poisson case. Second, the
correlation decays to about 1/10 in a single step, but
then lingers at that value. Taken together, these two
feature indicate that a short waiting time is more likely
followed by another short waiting time, i.e. that the
motion often stretches over several sweeps.

The right panel of the figure shows data obtained as
just discussed, except that logarithmic time differences
τk = ln(tk) − ln(tk−1) rather than linear ones are uti-
lized. The correlation function Cτ (k) decays quickly to
zero, albeit not in a single step, and the probability that
τ > x is nearly exponential. Again, short log-waiting
times are over-represented in the distribution, and since
the correlation decays to near zero in k = 5, they are
likely to follow each other. Thus, also in this case, ant at
the ’exit’ stretches beyond a single sweep. In summary,
banning the effect of our time unit, the sweep, being too
short relative to the de-correlation time of ant motion,
T = 50 data are, as expected in a stationary regime,
well described by a Poisson process, while T = 5 data
are well described by a log-Poisson process.

To conclude, the experiments of Richardson et al.
[76] showed that the nest exit statistics of Temnotho-
rax albipennis are well described by RD. This behav-
ior requires a hierarchy of dynamical barriers, expect-
edly due to ant interactions whose details are unknown.
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A simple agent-based model of interacting ants has a
‘glassy’ phase where the interaction between the agents
are important and the experimental findings are repro-
duced. When the agents’ motion becomes sufficiently
random, the system equilibrates, and the RD behavior
disappears. The model hints at a possible origin of the
barrier hierarchy required by RD, but the issue needs
further work for clarification, as does the biological rel-
evance and possible mechanism controlling the degree
of stochasticity of real ants.

4.2 High Tc superconductivity: the ROM model

This section deals with the motion of magnetic flux
lines inside type II superconductors. We mainly follow
Ref. [81], which describes simulations of the Restricted
Occupancy Model (ROM). This reference, which should
be consulted for further details, presents an early appli-
cation of RD ideas and uses a notation which dif-
fers from ours in the rest of this paper. In particu-
lar, t is not the time elapsed since an initial quench,
but an observation time. For the reader’s convenience,
we follow in this section the notation of Ref. [81].
Type II superconductors are layered materials which
remain superconducting even after an applied magnetic
field H begins to enter the sample at a field strength
H > Hc1 . When H exceeds a second value Hc2 > Hc1 ,
the material becomes a normal conductor. In the range
Hc1 < H < Hc2 , the external magnetic field penetrates
into the bulk of the superconductor by forming vortex
or flux lines created by circulating currents, or vortices,
of superconducting electrons. Parallel flux lines have a
repulsive interaction energy that depends on their dis-
tance, and pushes them toward the bulk of the material.
Inhomogeneities tend to trap the flux lines and impede
the rapid establishment of a uniform flux density. A
mechanical force balance is established between the pin-
ning force exerted by an inhomogeneity, also called a
pinning center, and the force produced by the gradient
in the surrounding flux line density. A pinning center
corresponds to a local potential energy well from which
thermal fluctuations can release a flux line and allow it
to move toward regions of lower flux density, kicking as
a result other flux lines out of their traps. In this way,
flux avalanches lower the gradient of flux line density as
flux lines move into the bulk region of the material. As
a consequence, the difference between the internal mag-
netic field and the external applied field decreases in a
relaxation process toward thermodynamic equilibrium.

The ROM model introduces a discrete grid for each
superconducting layer and uses the number ni of flux
lines transversing the ith plaquette of the grid as
dynamical variables. The only interactions included are
those between flux lines in the same or nearest-neighbor
plaquettes, and the motion of the flux lines is repre-
sented by a time variation of their numbers in each
plaquette. The energy of a flux line configuration {ni}
is given by:

E =
∑

ij

Aijninj −
∑

i

Aiini +
∑

i

Ap
i ni

+
∑

〈ij〉z

A2 (ni − nj)
2
. (21)

The first term represents the repulsion energy due to
vortex–vortex interaction within a layer, and the second
the vortex self-energy. As already mentioned, interac-
tions beyond nearest neighbors are neglected. We set
A0

def= Aii = 1, A1
def= Aij if i and j are nearest neigh-

bors on the same layer, and Aij = 0 otherwise. The
third term represents the interaction of the vortex pan-
cakes with the pinning centers. Ap is a random potential
and we assume for simplicity that Ap has the following
distribution P (Ap) = (1 − p) δ (Ap)−pδ (Ap − Ap

0) The
pinning strength |Ap

0| represents the total action of the
pinning centers located on a site. In the simulations
described here, Ap

0 = −0.3. Finally, the last term in Eq.
(21) describes the interactions between the vortex sec-
tions in different layers. This term is a nearest-neighbor
quadratic interaction along the z axis, so that the num-
ber of vortices in neighboring cells along the z-direction
tends to be the same.

The parameters of the model are defined in units
of A0. The time is measured in units of Monte Carlo
(MC) sweeps. We assume the external magnetic field
to be applied perpendicularly to the planes, and for
this reason, we only consider motion of the vortex pan-
cakes within the planes and use periodic boundary con-
ditions in the z-direction. Each individual Monte Carlo
update consists in selecting a vortex pancake at random
and moving it to a randomly selected neighbor posi-
tion. As always in Metropolis importance sampling, the
movement of the vortex is automatically accepted if the
energy of the system decreases or remain unchanged. If
the energy of the system increases, the movement is
accepted with probability exp(−ΔE/T ).

The low-temperature dynamical evolution of the
response to a magnetic field quickly ramped up to a
constant value at t = 0 is shown in Fig. 12, taken from
[81]. The total number N(t) of vortices, which is plotted
versus the logarithm of time, mainly changes through
nearly vertical steps which punctuate equilibrium-like
plateau values. The overwhelming majority of steps
leads irreversibly to a higher number of vortices and
we hence identify them with our quakes.

The quake size is the number v of vortices it allows
to enter the system and its Probability Density Func-
tion of v is shown in the insert of Fig. 13 for several
different temperatures and three different observation
times, all starting at tw = 1000 MC sweeps. Statistical
insight into the time evolution in the number of vortices
present within the system is provided in Fig. 13, where
the empirical distributions of N(t) are displayed for
three different times, which are equidistantly placed on
a logarithmic time axis. The insert in Fig. 13 shows the
tail of the probability density function of the number of
vortices, p(v), entering during a single quake. To a good
approximation, the tail is exponential and the time and
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Fig. 12 The detailed time variation of the total number
of vortices N(t) on the system for a single realization of
the pinning potential and the thermal noise in a 8 × 8 × 8
lattice for T = 0.1. Data obtained simulating the ROM
model briefly described in the main text. Notice that N(t)
increases in a stepwise fashion through quakes and features
an overall logarithmic growth trend. Figure taken from Ref.
[81]

temperature dependence of p(v) are negligible, except
for the highest temperature T = 0.5. From Eq.(8), the
probability that exactly q quakes occur during the time
interval [tw, tw + t] is log-Poisson distributed according
to:

Pq(t, tw) ==
tw

t + tw

(α log(1 + t/tw))q

q!
,

q = 0, 1, 2, . . .∞, (22)

where α is the logarithmic quaking rate.
We approximate the PDF for the number of vortices

v which enter during a given quake (see insert Fig. 13)
by an exponential distribution p(v) = exp(−v/v̄)/v̄,
and assume that consecutive quakes are statistically
independent. The number of vortices entering during
exactly q quakes is then a sum of exponentially dis-
tributed independent variables, and is hence Gamma
distributed. Finally, the PDF of the total number of
vortices entering during [tw, tw + t] by averaging the
Gamma distribution for q quakes over Eq. (22). This
leads to the following expression for the PDF of the
total number of vortices ΔN = N(t+tw)−N(tw) enter-
ing during the time interval [tw, tw + t]:

p(ΔN, t) = e−ΔN
v̄ −〈q〉

√
〈q〉

v̄ΔN
I1

(
2

√
〈q〉ΔN

v̄

)
,

(23)

where I1 denotes the modified Bessel function of order
1. To estimate 〈q〉, α = 22.6 is used for the logarith-
mic quaking rate. The average v̄ either obtained from
the distributions in the inset of Fig. 13 or from fitting
equation [Eq. (23)] to the simulated data in the main
frame of the same figure is estimated to be v̄ = 16.

Fig. 13 The main panel contains the temporal evolution
of the probability density function, P (N(t + tw) − N(tw)),
of the number of vortices entering for tw = 1000 and three
different observation times t = 188, 2791, 8371 given by the
black, slightly jagged, curves. The smooth curves (blue) are
a fit to the theoretical expression (see Eq. (23)). The system
is 16×16×8 and T = 0.0001. The insert shows the quake size
distribution for various temperatures for the time interval
between t = 1000 and t = 10000. For T ≤ 0.1, the distribu-
tion has an approximately exponential tail. For T = 0.5, the
shape gets closer to a Gaussian. Data obtained simulating
the ROM model briefly described in the main text. Figure
taken from Ref. [81]

We note that v̄ is essentially temperature independent
for temperatures below T ≈ 0.1. The probability den-
sity function, P (N(t + tw) − N(tw)) is plotted as a
smooth line for tw = 1000 and three different obser-
vation times t = 188, 2791, 8371 in the main panel of
Fig. 13, while the jagged line depicts the simulation
results. The agreement is reasonable, considering the
numerous approximations entering the derivation.

If we imagine that individual flux lines are trapped
into local energy wells and escape them as a result of
thermal fluctuations over a single energy barrier ΔE,
the rate of the process would contain an Arrhenius fac-
tor exp(−ΔE/(kbT )) and feature a strong dependence
on the temperature T . This naive scenario is disproven
by experimental observations, showing that the mag-
netic relaxation rate, or creep rate, only varies weakly
in a broad range of temperature, see [82].

To study ROM behavior in this respect, the external
field is rapidly increased at t = 0 to a constant value.
The time dependence of the total number of vortices
in the sample is then studied for several values of the
temperature T . The procedure is repeated for many
realizations to estimate an average vortex bulk density
n(t). As shown in Fig. 14, n(t) gradually increases as
vortices move in from the boundary and the value of
T has little effect except at the highest temperatures.
Finally, in the region 3 102 < t < 104, n(t) depends
linearly on the logarithm of time.

The near independence of the creep rate on the tem-
perature suggests the presence of a continuum of barri-
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Fig. 14 Average vortex density is plotted vs. the logarithm
of time for various temperatures. For T ≤ 0.1, the vortex
number is a piecewise linear function of log(t). For T =
0.5, the system relaxation becomes faster. Data obtained
simulating the ROM model briefly described in the main
text. Figure taken from Ref. [81]

ers, such that a record high-energy fluctuation is enough
to trigger a quake. The behavior than follows from the
independence of record statistics on the thermal noise
signal distribution.

4.3 Spin glasses

A general property of aging systems first noticed in spin
glasses is that short time probes, e.g. the imposition of
a high-frequency AC field under cooling at a constant
rate, elicit a (pseudo)equilibrium response, while long
time probes, the same external field applied at constant
temperature, reveal the true non-equilibrium nature of
the relaxation process. Interestingly, ‘short’ and ‘long’
must be understood relative to the time elapsed since
the initial thermal quench, i.e. the system age tw. This
property alone suffices to establish the presence of a
hierarchy of dynamical barriers in configuration space.

The experiments of Jonason et al [83], whose main
result is shown in Fig. 15, clearly demonstrate the hier-
archical barrier structures present in spin glass con-
figuration space. In the figure, the imaginary part χ′′
of the AC susceptibility of a spin glass is plotted as
a function of temperature. Importantly, the system is
first cooled at a constant rate, except for a pause at
temperature T = 12K, after which cooling is resumed.
Once the lowest temperature is reached, re-heating at
a constant rate without pausing at T = 12K is carried
out. The reference curve, which results from cooling
at a constant rate, is the equilibrium result expected
when the frequency of the applied magnetic field is suf-
ficiently high. The dip shows that aging entrenches the
system into gradually more-stable configurations, with
an ensuing decrease of the susceptibility. When cool-
ing is resumed, the system rapidly returns to the refer-
ence curve, a so-called ‘rejuvenation effect’. This indi-
cates that the ‘subvalleys’ explored at lower tempera-

Fig. 15 Experimental results by Jonason et al. [83], illus-
trating that the memory of the configurations visited by
aging at a certain temperature is not erased by a tempera-
ture sweep

tures are all dynamically equivalent, irrespective of the
aging process. Finally, upon re-heating without pause,
the system remembers the configuration space region
previously explored. This ‘memory effect’ confirms the
hierarchical nature of the energy landscape.

Thermal relaxation models associate the multi-scaled
nature of aging processes to a hierarchy of metastable
components of configuration space [6,7,25,84], often
described as nested ‘valleys’ of an energy landscape,
as illustrated in Fig. 2. Local thermal equilibration is
described in terms of time-dependent valley occupation
probabilities [27], which are controlled by transition
rates over the available ‘passes’. When applied to a hier-
archical structure, such description gradually coarsens
over time as valleys of increasing size reach equilibrium.
That barrier crossings are connected to record values in
time-series of sampled energies [85,86] is a central point
in record dynamics.

In connection with spin glasses, RD has predictions
describing Thermo-Remanent Magnetization (TRM)
data [87] where quakes are extracted from experimental
data as anomalous magnetic fluctuations. The results
described below are based on more recent numerical
work [88] to which we refer for further details, and
which describes the spontaneous magnetic fluctuations
of the Edwards–Anderson model [89]. As detailed in
[88], quakes are linked to record sized entries in the
time-series of observed energy values in isothermal sim-
ulations. We note in passing that this approach requires
the use of an event driven Monte Carlo algorithm, the
Waiting Time Method [85], where event times are real
numbers on scales much finer than an MC sweep.

Figure 16 shows, on a logarithmic ordinate, the PDFs
of energy changes Δ measured over time intervals of
two different types and scaled according to the tem-
perature at which the simulation is run. The lower
curve, which is well fitted by a Gaussian of zero mean,
describes energy changes over short time intervals of
equal length. The upper curve, which feature an expo-
nential decay on its left wing, describes energy fluc-
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Fig. 16 Seven PDFs of energy fluctuations Δ collected at
aging temperatures T = .3, .4, . . . .7, .75 and .8 are collapsed
into a single Gaussian PDF by the scaling Δ → T−αΔ, α =
1.75, and plotted using a logarithmic vertical scale. The
data plotted with yellow symbols are fitted by the Gaussian
shown as a dotted line. This Gaussian has average μG = 0
and standard deviation σG ≈ 6.2 10−3. Data plotted with
red symbols represent quake induced energy fluctuations Δq

and, for negative values of the abscissa, have estimated prob-
abilities close to the exponential PDF shown by the line.
Figure taken from Ref. [88]

tuations observed from quake to quake, i.e. over time
intervals of varying length. Results from isothermal sim-
ulations carried out at seven different temperatures,
T = .3, .4, . . . .7, .75 and .8, are collapsed by the scal-
ing Δ → T −αΔ, α = 1.75. The scaling form reflects
entropic effects linked to the density of states near local
energy minima.

Consider now the times of occurrence t′ and t of two
successive quakes, t > t′, and form the logarithmic time
difference Δln = ln(t) − ln(t′) = ln(t/t′) > 0, called for
short, log waiting time. If quaking is a Poisson process
in logarithmic time, the corresponding PDF, FΔln(x),
is given theoretically by:

FΔln(x) = rqe
−rqx, (24)

where rq is the constant logarithmic quaking rate. The
applicability of Eq. (24) has already been tested in a
number of different systems, including spin glasses [90].

The upper panel of Fig. 17 shows the empirical PDFs
of our logarithmic waiting times, sampled at different
temperatures and collapsed through the same scaling
as above, Δln → T −αΔln. The resulting PDF is fitted
by the expression FT−αΔln(x) = .81e−1.57x, which cov-
ers 2 decades of decay. Its mismatch with the correctly
normalized expression (24) stems from the systematic
deviations from an exponential decay visible for small
x values. These deviations arise in turn from quakes
which occur in rapid succession in distant parts of the
system. These are uncorrelated and their statistics is
not captured by the transformation t → ln t. The insert

Fig. 17 Upper panel: symbols: PDF of scaled ‘logarithmic
waiting times’ T−αΔln, α = 1.75, for the seven aging tem-
peratures T = .3, .4, . . . .7, .75 and .8. Dotted line: fit to the
exponential form y(x) = .81e−1.57x. Inset: the normalized
autocorrelation function of the logarithmic waiting times is
very close to a Kronecker delta function CΔln(k) ≈ δk,0.
The data shown are collected at T = .3, but similar behav-
ior is observed at the other investigated temperatures. Lower
panel: the number of quakes occurring up to time t is plotted
with a logarithmic abscissa, for all T values, with the steep-
est curve corresponding to the lowest temperature. Inset:
The quake rate, obtained as the logarithmic slope of the
curves shown in the main figure, is plotted vs. T−α, where
α = 1.75. The dotted line is a fit with slope 1.11. Figure
taken from Ref. [88]

shows that log-waiting times are to a good approxima-
tion δ-correlated.

Neglecting temporally very close events usually orig-
inating from well-separated parts of the system leads to
the corrected number of quakes nq(t) occurring up to
time t which is shown in the bottom panel of the fig-
ure for seven different aging temperatures. The steep-
est curve corresponds to the lowest temperature. The
red dotted lines are linear fits of nq(t) vs. ln t, and the
insert shows that the logarithmic slope of the curves
is well described by the function rq = 1.11T −1.75. We
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(a) (b)

Fig. 18 a Hyperbolic decay in the rate of intermittent cage breaks (“quakes”) in an experiment on jammed 2d-colloids
(black, data from Fig. 2a of Ref. [38]). MD simulation of the colloid [91] (blue) reproduces experiment over 3 decades. b
Log-Poisson statistics of aging [92] in the same simulations

note that the logarithmic quake rate as obtained from
the exponent (not the pre-factor) of the fit y(x) =
.81e−1.57x is rq = 1.57T −1.75. The two procedures fol-
lowed to determine the quaking rate are thus mathe-
matically but not numerically equivalent: in the time
domain, they give the same T −1.75/t dependence of the
quaking rate, but with two different pre-factors. The
procedure using the PDF of the logarithmic waiting
times seems preferable, due to better statistics.

Glossing over procedural difference, we write rq =
cT −1.75 where c is a constant, and note that, in our
RD description, the number of quakes occurring in the
interval [0, t) is then a Poisson process with average
μN (t) = cT −α ln(t). Qualitatively, we see that lowering
the temperature decreases the log-waiting times and
correspondingly increases the quaking rate. The quakes
involve, however, much smaller energy differences at
lower temperatures. Considering that T −α � T −1, we
see that the strongest dynamical constraints are not
provided by energetic barriers. As discussed in Ref. [88],
they are entropic in nature and stem from the dearth of
available low energy states close to local energy minima.

Finally, our numerical evidence fully confirms the
idea that quaking in the Edward–Anderson model is
a Poisson process whose average is proportional to the
logarithm of time. In other words, the transformation
t → ln t renders the aging dynamics (log) time homo-
geneous and permits a greatly simplified mathematical
description.

4.4 Hard sphere colloidal suspensions

Hard sphere colloids’ suspensions (HSC) are a paradig-
matic and intensively investigated complex system [93–
99] with two dynamical regimes controlled by the par-
ticle volume fraction [99]: below and above a critical
volume fraction, one finds a time homogeneous diffu-
sive regime and an aging regime, respectively. Here, the
particle mean square displacement (MSD) grows at a
decelerating rate through all experimentally accessible
time-scales.

The first RD description of HSC dynamics [100] re-
analyzed available experimental data [95], pointing out
that the particles’ mean squared displacement (MSD)
grows logarithmically with time. Furthermore, a heuris-
tic model explaining the experimental observations was
proposed and later extensively investigated numerically
[101]. More recently, Robe et al. [28] highlighted the
hyperbolic decay of the rate of ‘intermittent’ events in
2D-colloidal suspensions experiments by Yunker et al.
[38], as shown in Fig. 18a.

The present exposition gives an overview of recent
numerical studies [51,91], to be consulted for technical
details, where large 3D poly-disperse or 2D bi-disperse
HSC undergo extensive MD simulations.

To give an idea of the numerical effort involved, the
MD calculations performed in [51] calculate the 3D tra-
jectories of N = 50,000 hard spheres of unit mass, inter-
acting through the potential:

U(rij) =
ε

3

(
σi + σj

2rij

)36

.

In the above, ε is the unit of energy (and temperature),
rij is the distance between particles i and j, and σi

is a particle’s diameter. The diameters are drawn from
the uniform distribution in an interval centered at the
mean particle diameter σ, which is taken as the unit
of length. The unit of time, formally τ = σ

√
(m/ε), is

the time it takes an isolated particle to move its own
diameter at its thermal speed.

The initial state is generated by a sudden expansion
of the particles’ volume, leading to volume fractions
φ both below and above the critical value. The sys-
tems’ development is subsequently followed for more
than 6 decades in time. Two different types of parti-
cle motion are generally found in glass formers [102]:
‘in-cage rattlings’, where each particle moves reversibly
within a small region bounded by its neighbors, and
‘cage-breakings’, where ‘long jumps’ alter neighborhood
relations. Since cage rattlings, overwhelmingly the most
frequent events, on average do not produce net trans-
lations, particle spreading in HSC is facilitated by the
much more rare cage breakings. We thus take those
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Fig. 19 Mean square displacement (MSD, left block) and persistence (right block) in experiments of Yunker et al. [38] on
2d-colloidal suspensions at several area fractions, re-analyzed in Ref. [28]. Panels of the same row contain the exact same
data; however, each panel in the left column of each block is plotted against the conventional lag-time Δt = t − tw, and
against the time-ratio t/tw in the right column on the log-scale suggested by RD. The experimental data are arranged by
decreasing area fractions, with ≈ 84%, ≈ 82%, and ≈ 81%, from top to bottom. The inset to the bottom left panel contains
the same MSD data as that panel, but plotted on the log–log scale for ordinary diffusion; at 81%, the system is no longer
jamming and full aging is avoided. Both, MSD and persistence, in the jamming regime (> 81%) of the experiments closely
follow the RD predictions

(b)(a) (c)

Fig. 20 Van Hove distribution of single particle displacements Δx over a time-window Δt starting at tw after quenching,
from the MD simulation of a 2D colloid [91]. It spreads out more with increasing Δt (a), but less with increasing tw (b).
Data from (a, b) collapse for any fixed ratio of Δt/tw (c), as predicted by RD

long jumps to be the spatial manifestation of quakes,
and identify the latter from the statistics of single par-
ticle displacements. Finally, we check that quakes are a
log-Poisson process.

The macroscopic effect of HSC quakes is the loga-
rithmic growth of the particles’ mean square displace-
ment [28,51,100], closely resembling the experiments
by Yunker et al. [38], exhibited in Fig. 19. The per-
sistence data also shown there [28], i.e. the probability
that a particle does not experience irreversible motion
between times tw and t, are well described by the RD
arguments for the emergence of power laws in Sect. 3.3.
The decay of persistence (or the intermediate scattering
function [101]) gives a clear picture of the spatial het-
erogeneity of glassy systems: If particle motion was to

follow a regular Poisson process, the persistence would
decay exponentially in Δt = t − tw, while in a log-
Poisson process, persistence becomes an exponential in
the number of activations, ∼ α ln (t/tw) according to
Eq. (9), leading to a power-law decay in (t/tw)α.

The distribution of single particle displacements, aka
the self part of the Van Hove function, was investigated
in both, Refs. [51,91], using the method introduced
in Ref. [37] to describe heat transfer in the Edwards–
Anderson spin glass. The probability density function
(PDF) of displacements Δx occurring over a short time
interval Δt (lag-time) for given values of the system age
tw is written as:
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(a) (b)

Fig. 21 For three different ages, tw = 2 · 104, 8 · 104 and 8 · 105, the PDF of Δx, a one-dimensional particle displacement
sampled over a time interval Δt � tw, is plotted with a logarithmic ordinate. In both panels, the staggered line is a fit to
a Gaussian of mean μG = 0 and standard deviation σG = 0.05σ, where σ is the average particle diameter. Left-hand panel:
the same time interval Δt = 100τ is used for all three values of tw. Right-hand panel: time intervals Δt = 100, 400, 4000τ
growing proportional to the system age are used. The volume fraction of this system is φ = 0.620. Figure taken from [51]

(a) (b)

Fig. 22 a Logarithmic waiting times Δln tk = ln tk/tk−1, where tk is the time of the kth cage breaking are observed
in small domains of the simulation box and plotted, on a log scale, vs. the time at which they are observed. Only data
with Δln tk > 0.4 are included. The yellow circles are local binned log-time averages of these data and the line is the
average logarithmic waiting time. That local averages are nearly independent of log-time is evidence that the transformation
t → ln(t) renders the dynamics log-time homogeneous. b the PDF of the ‘log waiting times is estimated and plotted for
two independent sets of simulational raw data, using yellow square and cyan diamond symbols, respectively. The line is
an exponential fit to both estimated PDFs. The insert shows the normalized autocorrelation function of the sequence of
logarithmic waiting times corresponding to the yellow square PDF. To a good approximation, the log-waiting times are
uncorrelated and their PDF decays exponentially, which implies that quaking is a log-Poisson process. The volume fraction
of the system is φ = 0.620. Figure taken from [51]

GΔx|tw,Δt(x) =
∑

i

δ(xi(tw) − xi(tw + Δt) − x),

(25)

which is normalized over all values of the dummy vari-
able x. Specifically, G is sampled by collecting all posi-
tional changes xi(tw − Δt)− xi(tw) occurring at age tw
over time intervals of duration Δt, i.e. in the interval
I(tw) = (tw, tw + Δt). To improve the statistics, spher-
ical and reflection symmetry are used to (i) merge the
independent displacements in all orthogonal directions
into a single file, representing a fictitious ‘x ’ direction,

and (ii) to invert the sign of all negative displacements.
Compatibly with the requirement, Δt 	 tw needed to
associate G with a definite age tw, a Δt much larger
than the mean time between collisions is preferable,
as it accommodates many in-cage rattlings. Figure 21
depicts PDFs of single particle displacements in a 3D
colloid of volume fraction φ = 0.620 [51]. Small dis-
placements have an age independent Gaussian PDF,
corresponding to the staggered line, while larger dis-
placements strongly deviate from Gaussian behavior,
as already seen in Fig. 6 of Ref. [98]. The displace-
ments occur over short time intervals of length Δt 	 tw
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and are sampled in three longer observation intervals
of the form [t, 1.1t] where t = 2 104τ, t = 8 104τ and
t = 8 105τ , where τ is the simulational time unit. Since
the length of these intervals is only a tenth of the time
at which observations commence, aging effects occur-
ring during observation can be neglected and t can be
identified with the system age, i.e. tw ≈ t. In panel (a)
of Fig. 21, a single value Δt = 100τ was used for all
data sampling, while, in panel (b), values proportional
to the system age, Δt = 100, 400 and 4000τ were used.

That the central part of GΔx|tw,Δt is a Gaussian dis-
tribution with zero mean indicates that displacements
of small length arise from many independent and ran-
domly oriented contributions, which stem from multiple
in-cage rattlings. The typical size of the cage can then
be identified with the standard deviation of the Gaus-
sian part of the PDF which is seen to be independent
of age. The exponential tail is produced by cage break-
ings, i.e. displacements well beyond the cage size. The
weight of the non-Gaussian tail in panel (a) of Fig. 21
is seen to decrease with increasing age, while the length
distribution of displacements of length exceeding 0.5σG

is shown in [51] to be exponential and age independent.
Panel (b) of Fig. 21 shows that scaling Δt with the
age tw reasonably collapses the data. The same effect
is obtained in [91] for 2D-colloidal suspensions and for
other values of the ratio Δt/tw, see Fig. 20. Summa-
rizing, the particle displacement statistics provides a
cage size estimate and a way to identify quakes as cage
breakings.

The key step of quake identification in a given set-
ting has some leeway, but in spatially extended systems,
spatio-temporal correlations play a major role: The
existence of spatial domains, a property which reflects
the strong spatial heterogeneity of glassy dynamics
[103], is required in an RD description of HCS. Spa-
tially extended aging systems of size N [104] contain
an extensive number α(N) ∝ N of equivalent spa-
tial domains. Events occurring in different domains
are statistically independent, while those occurring in
the same domain have long-lived temporal correlations.
These are formally removed in RD by the transforma-
tion t → ln t. If this device works, the total number of
quakes occurring in the system between times tw and
t > tw is a Poisson process with average:

μ(t, tw) = α(N)rq ln(t/tw), (26)

where rq is the average logarithmic quake rate in each
domain. The number of quakes is extensive and grows at
a constant rate in log-time and at a rate proportional to
1/t in real time. Within each domain, the rate rq can be
read off the log-waiting time PDF FΔln t(x) = rqe

−rqx,
i.e. the probability density that the log-waiting time
to the next quake equals x. Usually, only a minuscule
fraction of configuration space is explored during an
aging process, and many variables do not participate in
any quake. Hence, the domain size can grow in time
with no changes in α(N), which is best understood
as the number of active domains where quake activ-
ity occurs. In Ref. [51], the simulation box is subdi-

vided into 163 equal and adjacent sub-volumes, each
containing, on average, slightly more than ten parti-
cles. The size is the largest possible yielding log-time
homogeneous quake statistics. Let tk denote the time of
occurrence of the kth quake. Panel (a) of Fig. 22 shows
for the 3D colloid that the log-waiting times between
successive quakes occurring within the same domain,
Δ ln t = ln tk − ln tk−1, are uniformly distributed on
a logarithmic time axis, while panel (b) shows that
(i) they are uncorrelated, which we take as a proxy
for independence, and (ii) exponentially distributed.
Together, these properties imply that quaking is a log-
Poisson process within each domain, and by extension
in the whole system. We emphasize that subdividing
the system into domain is crucial when calculating the
log-waiting times. Similar data can be obtained for the
2D colloid, and even in other materials, as shown in
Fig. 18b. It demonstrates that, when too many events
blur together (e.g. in a domain with too many parti-
cles n), it hides the local impact of the decelerating
activated events and the exponential tails weaken. The
data collapse when counts are rescaled by n (see Insets).
In Ref. [92], we have shown identical behavior for spin
glasses as well as for our heuristic model [101] of RD,
revealing a property renewal processes [105–107] cannot
reproduce without extra assumptions [107].

The logarithmic growth of the particles’ MSD, resem-
bling the data in Fig. 19, is also measured and dis-
played in [51,91]. Here, we simply note that the ‘long
jumps’ associated with quakes have an age independent
PDF. Hence, each jump increments the MSD by an age
independent amount, and the MSD and the number of
quakes are simply proportional.

5 Discussion and outlook

Record dynamics offers a coarse-grained statistical
description of metastable systems evolving through a
series of punctuated equilibria, including ‘classic’ glassy
systems [28,37,51,88,91,100,108] as well as ecosystems
of biological [69–71,77] and cultural [109,110] origin.

A clear distinction is made between the fluctuation
dynamics within each equilibrium state and the dynam-
ics of the quakes which punctuate them. RD posits that
quakes are a log-Poisson process [104], whose decelerat-
ing nature stems from the record high free-energy bar-
riers which must be successively overcome to destroy
an equilibrium state and generate the next. This meso-
scopic description can be verified, possibly falsified, by
investigating the statistics of alleged quakes in observa-
tional and computational data.

SOC and RD are both coarse-grained statistical
descriptions of stationary, respectively non-stationary
dynamics of complex systems. In spite of this important
difference, they both rely on the presence of a multitude
of marginally stable metastable attractors [23]. These
attractors are fixed in SOC, but gradually evolve in
RD, where quake triggering configuration changes are
systematically demoted to reversible fluctuations. This
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is implied by the fact that a record barrier only counts
as such at the first crossing, and reflects the hierarchical
nature of the underlying landscape.

Continuous Time Random Walks (CTRW) [1,2,111,
112] describe metastable system in terms of jumps from
trap to trap characterized by a fixed waiting time distri-
bution. Once a jump has occurred, the system is back
to square one and ready to jump again in the same
fashion. CTRW are thus renewal processes, which pro-
duce, as RD also does, the sub-diffusive behavior they
were designed for, if the waiting time probability den-
sity function is chosen to be a power law. However,
CTRW do not offer case-specific microscopic justifica-
tions of this choice.

In spite of some superficial similarities, CTRW and
RD rely on orthogonal physical pictures of complex
behavior [113]. Whether one or the other should be
chosen in a specific application must rest on empirical
evidence [114] and, mainly, on the philosophical incli-
nations of the investigator.

In the RD applications presented, the focus has been
(i) to provide the physical background, (ii) to show
how the log-Poisson nature of the quaking process can
be extracted from empirical data and (iii) how RD pre-
dicts macroscopic behavior.

One RD feature which plays a role in spatially
extended system, and which has not been highlighted so
far, stems from the simple mathematical fact that the
sum of two independent Poisson processes with aver-
ages m1 and m2 is itself a Poisson process with aver-
age m1 + m2. An extended system with short-ranged
interactions can be treated as composed of indepen-
dent parts with linear size of the order of the corre-
lation length. If quaking in each part is described by
a log-Poisson process, the same applies to the whole
system. Consequently, the quaking rate is an extensive
quantity which scales proportionally with the system
size. This is as reasonably expected and can be advan-
tageous when analyzing experimental or numerical data
from different sources, since the system size dependence
can be scaled out. Finally, since the average and vari-
ance of a Poisson process are identical, the distribution
itself becomes sharp in the thermodynamic limit, which
means that RD correctly recognizes the self-averaging
property of large systems.

There are a number of RD applications not discussed
for space reasons, of which one, the Parking Lot Model
[115] deserves a brief mention, because (i) its barrier
hierarchy is purely entropic and (ii) it features a length
scale increasing with the system age, a real space prop-
erty generally expected in evolving systems with grow-
ing ergodic components.

In conclusion, RD connects microscopic interac-
tions and macroscopic phenomenology via a mesoscopic
description, based on the log-time homogeneity of the
quake dynamics. To analyze a new problem with RD
one needs an hypothesis, which can of course be itera-
tively improved, on what quakes are and how to identify
them. Once this is done, the dynamical consequences of
the quakes in real as well as configuration space can be
studied. The approach is generally applicable to sys-

tems going through metastable equilibria and invari-
ably produces a decelerating dynamics.

Interestingly, this is not the case for human cul-
tural evolution, a staged process with rapid transitions
between stages, not presently discussed, which is accel-
erating rather than decelerating. However, as recently
argued in [116], the natural variable of that process is
not time in SI units, but the number of inter-personal
interactions, a quantity growing super linearly in time.
In this case, an RD description of an underlying deceler-
ating optimization process can lead to a process which
accelerates, when described as function of wall-clock
time.
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