6 research outputs found

    How a spin-glass remembers. Memory and rejuvenation from intermittency data: an analysis of temperature shifts

    Full text link
    The memory and rejuvenation aspects of intermittent heat transport are explored theoretically and by numerical simulation for Ising spin glasses with short-ranged interactions. The theoretical part develops a picture of non-equilibrium glassy dynamics recently introduced by the authors. Invoking the concept of marginal stability, this theory links irreversible `intermittent' events, or `quakes' to thermal fluctuations of record magnitude. The pivotal idea is that the largest energy barrier b(tw,T)b(t_w,T) surmounted prior to twt_w by thermal fluctuations at temperature TT determines the rate rq1/twr_q \propto 1/t_w of the intermittent events occurring near twt_w. The idea leads to a rate of intermittent events after a negative temperature shift given by rq1/tweffr_q \propto 1/t_w^{eff}, where the `effective age' twefftwt_w^{eff} \geq t_w has an algebraic dependence on twt_w, whose exponent contains the temperatures before and after the shift. The analytical expression is verified by numerical simulations. Marginal stability suggests that a positive temperature shift TTT \to T' could erase the memory of the barrier b(tw,T)b(t_w,T). The simulations show that the barrier b(tw,T)b(tw,T)b(t_w,T') \geq b(t_w,T) controls the intermittent dynamics, whose rate is hence rq1/twr_q \propto 1/t_w. Additional `rejuvenation' effects are also identified in the intermittency data for shifts of both signs.Comment: Revised introduction and discussion. Final version to appear in Journal of Statistical Mechanics: Theory and Experimen

    Tangent map intermittency as an approximate analysis of intermittency in a high dimensional fully stochastic dynamical system: The Tangled Nature model

    Get PDF
    It is well known that low-dimensional nonlinear deterministic maps close to a tangent bifurcation exhibit intermittency and this circumstance has been exploited, e.g. by Procaccia and Schuster [Phys. Rev. A 28, 1210 (1983)], to develop a general theory of 1/f spectra. This suggests it is interesting to study the extent to which the behavior of a high-dimensional stochastic system can be described by such tangent maps. The Tangled Nature (TaNa) Model of evolutionary ecology is an ideal candidate for such a study, a significant model as it is capable of reproducing a broad range of the phenomenology of macroevolution and ecosystems. The TaNa model exhibits strong intermittency reminiscent of Punctuated Equilibrium and, like the fossil record of mass extinction, the intermittency in the model is found to be non-stationary, a feature typical of many complex systems. We derive a mean-field version for the evolution of the likelihood function controlling the reproduction of species and find a local map close to tangency. This mean-field map, by our own local approximation, is able to describe qualitatively only one episode of the intermittent dynamics of the full TaNa model. To complement this result we construct a complete nonlinear dynamical system model consisting of successive tangent bifurcations that generates time evolution patterns resembling those of the full TaNa model in macroscopic scales. The switch from one tangent bifurcation to the next in the sequences produced in this model is stochastic in nature, based on criteria obtained from the local mean-field approximation, and capable of imitating the changing set of types of species and total population in the TaNa model. The model combines full deterministic dynamics with instantaneous parameter random jumps at stochastically drawn times. In spite of the limitations of our approach, that entails a drastic collapse of degrees of freedom, the description of a high-dimensional model system in terms of a low-dimensional one appears to be illuminating

    Subcellular Proteomics Reveals a Role for Nucleo-cytoplasmic Trafficking at the DNA Replication Origin Activation Checkpoint

    No full text
    corecore