4 research outputs found

    Electrochemical characterization of organic coatings for protection of historic steel artefacts

    Get PDF
    Figuras en el archivo zipElectrochemical techniques are mainly known in the field of cultural heritage conservation as a tool for the elimination of corrosion layers or the removal of chlorides. However, these techniques are also a valuable tool for assessing the anti-corrosive efficiency of protective coatings. The aim of this study was to evaluate the performance of different coatings for their use in metallic heritage conservation using polarization resistance (Rp) and electrochemical impedance spectroscopy (EIS). Carbon steel samples were prepared to simulate the surface composition and morphology of historic steel artefacts, and coated by a conservator-restorer following the common practices in conservation treatments. Three commercial organic coatings have been studied: a microcrystalline wax (RenaissanceTM) and a methyl acrylate/ethyl methacrylate copolymer resin (ParaloidTM B-72) dissolved in acetone –both them commonly used in conservation and restoration treatments– and a ethylene copolymer wax emulsion in water (PoligenTM ES- 91009), that has not been used so far for this purposes. Four commercial corrosion inhibitor additives were added to the ParaloidTM B-72 resin and PoligenTM ES-91009 wax. The additives were commercial preparations with the following known active components: a blend of triazoles (M435), an ammonium salt of tricarboxylic acid (M370), a calcium sulphonate (M109), and a bis-oxazoline (Alkaterge-TTM). Rp and EIS results showed that the best protection of the steel specimens was afforded by PoligenTM ES-91009 when applied in thick layers. None of the additives have shown a clear improvement of the protection properties of the coatings, and one of them impaired the barrier effect of the coating.Acknowledgements The authors express their gratitude to the Sixth Framework Programme of the European Commission for financial support of PROMET Project (Contract 509126). D.M. Bastidas expresses his gratitude to the CSIC of Spain for his contract under the I3P Programme, co-financed by the European Social Fund.Peer reviewe

    Electrochemical characterization of organic coatings for protection of historic steel artefacts

    Get PDF
    Figuras en el archivo zipElectrochemical techniques are mainly known in the field of cultural heritage conservation as a tool for the elimination of corrosion layers or the removal of chlorides. However, these techniques are also a valuable tool for assessing the anti-corrosive efficiency of protective coatings. The aim of this study was to evaluate the performance of different coatings for their use in metallic heritage conservation using polarization resistance (Rp) and electrochemical impedance spectroscopy (EIS). Carbon steel samples were prepared to simulate the surface composition and morphology of historic steel artefacts, and coated by a conservator-restorer following the common practices in conservation treatments. Three commercial organic coatings have been studied: a microcrystalline wax (RenaissanceTM) and a methyl acrylate/ethyl methacrylate copolymer resin (ParaloidTM B-72) dissolved in acetone –both them commonly used in conservation and restoration treatments– and a ethylene copolymer wax emulsion in water (PoligenTM ES- 91009), that has not been used so far for this purposes. Four commercial corrosion inhibitor additives were added to the ParaloidTM B-72 resin and PoligenTM ES-91009 wax. The additives were commercial preparations with the following known active components: a blend of triazoles (M435), an ammonium salt of tricarboxylic acid (M370), a calcium sulphonate (M109), and a bis-oxazoline (Alkaterge-TTM). Rp and EIS results showed that the best protection of the steel specimens was afforded by PoligenTM ES-91009 when applied in thick layers. None of the additives have shown a clear improvement of the protection properties of the coatings, and one of them impaired the barrier effect of the coating.Acknowledgements The authors express their gratitude to the Sixth Framework Programme of the European Commission for financial support of PROMET Project (Contract 509126). D.M. Bastidas expresses his gratitude to the CSIC of Spain for his contract under the I3P Programme, co-financed by the European Social Fund.Peer reviewe

    Laser cleaning in conservation of stone, metal, and painted artifacts: state of the art and new insights on the use of the Nd:YAG lasers

    No full text
    corecore