16 research outputs found

    Carcinoma cells misuse the host tissue damage response to invade the brain

    Get PDF
    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carcinoma cell invasion. Here we report that this is a fatal side effect of a physiological damage response of the brain tissue. In a brain slice coculture model, contact with both benign and malignant epithelial cells induced a response by microglia and astrocytes comparable to that seen at the interface of human cerebral metastases. While the glial damage response intended to protect the brain from intrusion of benign epithelial cells by inducing apoptosis, it proved ineffective against various malignant cell types. They did not undergo apoptosis and actually exploited the local tissue reaction to invade instead. Gene expression and functional analyses revealed that the C-X-C chemokine receptor type 4 (CXCR4) and WNT signaling were involved in this process. Furthermore, CXCR4-regulated microglia were recruited to sites of brain injury in a zebrafish model and CXCR4 was expressed in human stroke patients, suggesting a conserved role in damage responses to various types of brain injuries. Together, our findings point to a detrimental misuse of the glial damage response program by carcinoma cells resistant to glia-induced apoptosis

    Rosiglitazon reduziert MMP-9 Serumspiegel bei Patienten mit Diabetes mellitus Typ 2 und koronarer Herzerkrankung: prospektive Studie an 40 Patienten mit Diabetes mellitus Typ 2 und koronarer Herzerkrankung

    No full text
    Im Rahmen dieser Dissertation wurden die Eigenschaften/ die Einflüsse von Rosiglitazon auf Inflammationsparameter in einer Placebo-kontrollierten Studie bei Patienten mit KHK und DM überprüft

    Core-Shell Silver/Polymeric Nanoparticles-Based Combinatorial Therapy against Breast Cancer In-vitro

    No full text
    The current study aimed at preparing AgNPs and three different core-shell silver/polymeric NPs composed of Ag core and three different polymeric shells: polyvinyl alcohol (PVA), polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP). Thereafter, the core/shell NPs were loaded with a chemotherapeutic agent doxorubicin (DOX). Finally, the cytotoxic effects of the different core-shell Ag/polymeric NPs-based combinatorial therapeutics were tested in-vitro against breast cancer (MCF-7) and human fibroblast (1BR hTERT) cell lines. AgNPs, Ag/PVA and Ag/PVP NPs were more cytotoxic to MCF-7 cells than normal fibroblasts, as well as DOX-Ag, DOX-Ag/PVA, DOX-Ag/PEG and DOX-Ag/PVP nanocarriers (NCs). Notably, low dosage of core-shell DOX-loaded Ag/polymeric nanocarriers (NCs) exhibited a synergic anticancer activity, with DOX-Ag/PVP being the most cytotoxic. We believe that the prepared NPs-based combinatorial therapy showed a significant enhanced cytotoxic effect against breast cancer cells. Future studies on NPs-based combinatorial therapy may aid in formulating a novel and more effective cancer therapeutics

    Insights into Red Sea Brine Pool Specialized Metabolism Gene Clusters Encoding Potential Metabolites for Biotechnological Applications and Extremophile Survival

    No full text
    The recent rise in antibiotic and chemotherapeutic resistance necessitates the search for novel drugs. Potential therapeutics can be produced by specialized metabolism gene clusters (SMGCs). We mined for SMGCs in metagenomic samples from Atlantis II Deep, Discovery Deep and Kebrit Deep Red Sea brine pools. Shotgun sequence assembly and secondary metabolite analysis shell (antiSMASH) screening unraveled 2751 Red Sea brine SMGCs, pertaining to 28 classes. Predicted categorization of the SMGC products included those (1) commonly abundant in microbes (saccharides, fatty acids, aryl polyenes, acyl-homoserine lactones), (2) with antibacterial and/or anticancer effects (terpenes, ribosomal peptides, non-ribosomal peptides, polyketides, phosphonates) and (3) with miscellaneous roles conferring adaptation to the environment/special structure/unknown function (polyunsaturated fatty acids, ectoine, ladderane, others). Saccharide (80.49%) and putative (7.46%) SMGCs were the most abundant. Selected Red Sea brine pool sites had distinct SMGC profiles, e.g., for bacteriocins and ectoine. Top promising candidates, SMs with pharmaceutical applications, were addressed. Prolific SM-producing phyla (Proteobacteria, Actinobacteria, Cyanobacteria), were ubiquitously detected. Sites harboring the largest numbers of bacterial and archaeal phyla, had the most SMGCs. Our results suggest that the Red Sea brine niche constitutes a rich biological mine, with the predicted SMs aiding extremophile survival and adaptation

    Insights into red sea brine pool specialized metabolism gene clusters encoding potential metabolites for biotechnological applications and extremophile survival

    No full text
    © 2019 by the Authors. The recent rise in antibiotic and chemotherapeutic resistance necessitates the search for novel drugs. Potential therapeutics can be produced by specialized metabolism gene clusters (SMGCs). We mined for SMGCs in metagenomic samples from Atlantis II Deep, Discovery Deep and Kebrit Deep Red Sea brine pools. Shotgun sequence assembly and secondary metabolite analysis shell (antiSMASH) screening unraveled 2751 Red Sea brine SMGCs, pertaining to 28 classes. Predicted categorization of the SMGC products included those (1) commonly abundant in microbes (saccharides, fatty acids, aryl polyenes, acyl-homoserine lactones), (2) with antibacterial and/or anticancer effects (terpenes, ribosomal peptides, non-ribosomal peptides, polyketides, phosphonates) and (3) with miscellaneous roles conferring adaptation to the environment/special structure/unknown function (polyunsaturated fatty acids, ectoine, ladderane, others). Saccharide (80.49%) and putative (7.46%) SMGCs were the most abundant. Selected Red Sea brine pool sites had distinct SMGC profiles, e.g., for bacteriocins and ectoine. Top promising candidates, SMs with pharmaceutical applications, were addressed. Prolific SM-producing phyla (Proteobacteria, Actinobacteria, Cyanobacteria), were ubiquitously detected. Sites harboring the largest numbers of bacterial and archaeal phyla, had the most SMGCs. Our results suggest that the Red Sea brine niche constitutes a rich biological mine, with the predicted SMs aiding extremophile survival and adaptation

    Bioprospecting the microbiome of Red Sea Atlantis II brine pool for peptidases and biosynthetic genes with promising antibacterial activity

    No full text
    Background: The search for novel antimicrobial agents is crucial as antibiotic-resistant pathogens continue to emerge, rendering the available antibiotics no longer efective. Likewise, new anti-cancer drugs are needed to combat the emergence of multi-drug resistant tumors. Marine environments are wealthy sources for natural products. Additionally, extreme marine environments are interesting niches to search for bioactive natural compounds. In the current study, a fosmid library of metagenomic DNA isolated from Atlantis II Deep Lower Convective Layer (ATII LCL), was functionally screened for antibacterial activity as well as anticancer efects. Results: Two clones exhibited antibacterial efects against the marine Bacillus Cc6 strain, namely clones 102-5A and 88-1G and they were further tested against eleven other challenging strains, including six safe relatives of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), a safe relative to Mycobacterium tuberculosis and four resistant clinical isolates. Clone 88-1G resulted in clear zones of inhibition against eight bacterial strains, while clone 102-5A resulted in zones of inhibition against fve bacterial strains. The whole cell lysates of clone 88-1G showed 15% inhibition of Mtb ClpP protease -Mycobacterium tuberculosis drug target-, while whole cell lysates of clone 102-5A showed 19% inhibition of Mtb ClpP protease. Whole cell lysates from the selected clones exhibited anticancer efects against MCF-7 breast cancer cells (cell viability at 50% v/v was 46.2%±9.9 for 88-1G clone and 38%±7 for 102-5A clone), U2OS osteosarcoma cells (cell viability at 50% v/v was 64.6%±12.3 for 88-1G clone and 28.3%±1.7 for 102-5A clone) and 1BR hTERT human fbroblast cells (cell viability at 50% v/v was 74.4%±5.6 for 88-1G clone and 57.6%±8.9 for 102-5A clone). Sequencing of 102-5A and 88-1G clones, and further annotation detected putative proteases and putative biosynthetic genes in clones 102-5A and 88-1G, respectively. Conclusions: The ATII LCL metagenome hosts putative peptidases and biosynthetic genes that confer antibiotic and anti-cancer efects. The tested clones exhibited promising antibacterial activities against safe relative strains to ESKAPE pathogens and Mycobacterium tuberculosis. Thus, searching the microbial dark matter of extreme environments is a promising approach to identify new molecules with pharmaceutical potential us

    Optimization design of interdigitated microelectrodes with an insulation layer on the connection tracks to enhance efficiency of assessment of the cell viability

    No full text
    Abstract Background Microelectrical Impedance Spectroscopy (µEIS) is a tiny device that utilizes fluid as a working medium in combination with biological cells to extract various electrical parameters. Dielectric parameters of biological cells are essential parameters that can be extracted using µEIS. µEIS has many advantages, such as portability, disposable sensors, and high-precision results. Results The paper compares different configurations of interdigitated microelectrodes with and without a passivation layer on the cell contact tracks. The influence of the number of electrodes on the enhancement of the extracted impedance for different types of cells was provided and discussed. Different types of cells are experimentally tested, such as viable and non-viable MCF7, along with different buffer solutions. This study confirms the importance of µEIS for in vivo and in vitro applications. An essential application of µEIS is to differentiate between the cells’ sizes based on the measured capacitance, which is indirectly related to the cells’ size. The extracted statistical values reveal the capability and sensitivity of the system to distinguish between two clusters of cells based on viability and size. Conclusion A completely portable and easy-to-use system, including different sensor configurations, was designed, fabricated, and experimentally tested. The system was used to extract the dielectric parameters of the Microbeads and MCF7 cells immersed in different buffer solutions. The high sensitivity of the readout circuit, which enables it to extract the difference between the viable and non-viable cells, was provided and discussed. The proposed system can extract and differentiate between different types of cells based on cells’ sizes; two other polystyrene microbeads with different sizes are tested. Contamination that may happen was avoided using a Microfluidic chamber. The study shows a good match between the experiment and simulation results. The study also shows the optimum number of interdigitated electrodes that can be used to extract the variation in the dielectric parameters of the cells without leakage current or parasitic capacitance
    corecore