33 research outputs found

    Ethnicity and OPRM variant independently predict pain perception and patient-controlled analgesia usage for post-operative pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Morphine consumption can vary widely between individuals even for identical surgical procedures. As mu-opioid receptor (OPRM1) is known to modulate pain perception and mediate the analgesic effects of opioid compounds in the central nervous system, we examined the influence of two OPRM polymorphisms on acute post-operative pain and morphine usage in women undergoing elective caesarean delivery.</p> <p>Results</p> <p>Data on self-reported pain scores and amount of total morphine use according to patient-controlled analgesia were collected from 994 women from the three main ethnic groups in Singapore. We found statistically significant association of the OPRM 118A>G with self-administered morphine during the first 24-hour postoperative period both in terms of total morphine (p = 1.7 × 10<sup>-5</sup>) and weight-adjusted morphine (p = 6.6 × 10<sup>-5</sup>). There was also significant association of this OPRM variant and time-averaged self-rated pain scores (p = 0.024). OPRM 118G homozygotes used more morphine and reported higher pain scores than 118A carriers. Other factors which influenced pain score and morphine usage include ethnicity, age and paying class.</p> <p>Conclusion</p> <p>Our results suggest that ethnicity and OPRM 118A>G genotype are independent and significant contributors to variation in pain perception and postoperative morphine use in patients undergoing cesarean delivery.</p

    Diploids in the Cryptococcus neoformans Serotype A Population Homozygous for the α Mating Type Originate via Unisexual Mating

    Get PDF
    The ubiquitous environmental human pathogen Cryptococcus neoformans is traditionally considered a haploid fungus with a bipolar mating system. In nature, the α mating type is overwhelmingly predominant over a. How genetic diversity is generated and maintained by this heterothallic fungus in a largely unisexual α population is unclear. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions generating both diploid intermediates and haploid recombinant progeny. Same-sex mating (α-α) also occurs in nature as evidenced by the existence of natural diploid αADα hybrids that arose by fusion between two α cells of different serotypes (A and D). How significantly this novel sexual style contributes to genetic diversity of the Cryptococcus population was unknown. In this study, ∼500 natural C. neoformans isolates were tested for ploidy and close to 8% were found to be diploid by fluorescence flow cytometry analysis. The majority of these diploids were serotype A isolates with two copies of the α MAT locus allele. Among those, several are intra-varietal allodiploid hybrids produced by fusion of two genetically distinct α cells through same-sex mating. The majority, however, are autodiploids that harbor two seemingly identical copies of the genome and arose via either endoreplication or clonal mating. The diploids identified were isolated from different geographic locations and varied genotypically and phenotypically, indicating independent non-clonal origins. The present study demonstrates that unisexual mating produces diploid isolates of C. neoformans in nature, giving rise to populations of hybrids and mixed ploidy. Our findings underscore the importance of same-sex mating in shaping the current population structure of this important human pathogenic fungus, with implications for mechanisms of selfing and inbreeding in other microbial pathogens

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Reply

    No full text
    corecore