1,875 research outputs found

    Decoherence and Landauer's Principle in Qubit-Cavity Quantum-Field-Theory Interaction

    Full text link
    We consider quantum decoherence and Landauer's principle in qubit-cavity quantum field theory (QFT) interaction, treating the qubit as the system and cavity QFT as the environment. In particular, we investigate the changes that occur in the system with a pure initial state and environment during the decoherence process, with or without energy dissipation, and compare the results with the case in which the initial state of the system is a mixed state and thus decoherence is absent. When we choose an interaction Hamiltonian such that the energy and coherence of the system change simultaneously, the population change of the system and the energy change are the same when the initial state is mixed. However, the decoherence terms increase the von Neumann entropy of the system. On the other hand, if the interaction Hamiltonian does not change the energy of the system, there is only the decoherence effect. The environment will be a distribution in the basis of the displaced number state and always increases the energy. Landauer's principle is satisfied in both cases.Comment: 8 pages, 4 figure

    Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow based Binary Integer Multi-Objective Optimization Approach

    Get PDF
    The re-emergence of two-phase bipolar dc distribution network, which utilizes the neutral wire for efficient distribution, has spurred research interest in recent years. In practice, system efficiency (power loss) and voltage unbalance are major concerns for the planning and design of the two-phase dc bipolar network. While most of the existing methodologies are power electronics solutions, there are very few works on resolving the problem from the power system perspective. This paper proposes a model-based optimization method by first formulating the power flow model for two-phase dc bipolar network using the single line modeling technique and nodal analysis. Second, a binary integer load distribution model is proposed to consider the re-distribution of unipolar loads across the two unipolar distribution poles. Together with the power flow model, the system power loss and system voltage unbalance indices are formulated as a binary integer quadratic model. Third, a multi-objective optimization model is formulated and solved using the weighted sum approach. The proposed method is applied to a dc LED lighting system design, which considers both voltage unbalance and power loss. Using a 15 bus single source and a 33 bus multi-source network as case studies, the developed power flow model is validated with very high accuracy. Compared to existing iterative methods, the proposed model-based approach is able to significantly improve the voltage balancing across the distribution system.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore

    Study on the effect of iron-based deoxidizing inhibitors for coal spontaneous combustion prevention

    Get PDF
    To improve the prevention of spontaneous coal combustion, reduced iron powder and other ingredients should be added together to form an iron-based deoxidizing inhibitor, with the dual effect of oxygen consumption and inhibition. The oxygen consumption rate of the inhibitor was studied through experiments. According to the theory of coordination resistance, the coordination resistance of Fe 3+ was studied via the density functional method. Subsequently, a comparative experiment of the effects on spontaneous coal combustion was conducted. The research shows that several kinds of common resistance agents that are added to the reduced iron powder can consume oxygen. However, the rate of oxygen consumption varies. Fe 3+ produced by the reduced iron powder indicates a strong coordination resistance. When compared with traditional inhibitors of Mg 2+ , Fe 3+ has a stronger inhibition effect on the N, P, and S reactive groups in coal. The overall inhibitory effect is better than that of traditional inhibitors, because of the increased oxygen consumption and the coordination resistance of Fe 3+ on the basis of traditional inhibitors

    Predicting Complex Relaxation Processes in Metallic Glass

    Get PDF
    Relaxation processes significantly influence the properties of glass materials. However, understanding their specific origins is difficult; even more challenging is to forecast them theoretically. In this study, using microseconds molecular dynamics simulations together with an accurate many-body interaction potential, we predict that an Al90Sm10 metallic glass would have complex relaxation behaviors: In addition to the main (α) relaxation, the glass (i) shows a pronounced secondary (β) relaxation at cryogenic temperatures and (ii) exhibits an anomalous relaxation process (α2) accompanying α relaxation. Both of the predictions are verified by experiments. Computational simulations reveal the microscopic origins of relaxation processes: while the pronounced β relaxation is attributed to the abundance of stringlike cooperative atomic rearrangements, the anomalous α2 process is found to correlate with the decoupling of the faster motions of Al with slower Sm atoms. The combination of simulations and experiments represents a first glimpse of what may become a predictive routine and integral step for glass physics

    Towards Vehicle-to-everything Autonomous Driving: A Survey on Collaborative Perception

    Full text link
    Vehicle-to-everything (V2X) autonomous driving opens up a promising direction for developing a new generation of intelligent transportation systems. Collaborative perception (CP) as an essential component to achieve V2X can overcome the inherent limitations of individual perception, including occlusion and long-range perception. In this survey, we provide a comprehensive review of CP methods for V2X scenarios, bringing a profound and in-depth understanding to the community. Specifically, we first introduce the architecture and workflow of typical V2X systems, which affords a broader perspective to understand the entire V2X system and the role of CP within it. Then, we thoroughly summarize and analyze existing V2X perception datasets and CP methods. Particularly, we introduce numerous CP methods from various crucial perspectives, including collaboration stages, roadside sensors placement, latency compensation, performance-bandwidth trade-off, attack/defense, pose alignment, etc. Moreover, we conduct extensive experimental analyses to compare and examine current CP methods, revealing some essential and unexplored insights. Specifically, we analyze the performance changes of different methods under different bandwidths, providing a deep insight into the performance-bandwidth trade-off issue. Also, we examine methods under different LiDAR ranges. To study the model robustness, we further investigate the effects of various simulated real-world noises on the performance of different CP methods, covering communication latency, lossy communication, localization errors, and mixed noises. In addition, we look into the sim-to-real generalization ability of existing CP methods. At last, we thoroughly discuss issues and challenges, highlighting promising directions for future efforts. Our codes for experimental analysis will be public at https://github.com/memberRE/Collaborative-Perception.Comment: 19 page

    Hedgehogs as Amplifying Hosts of Severe Fever with Thrombocytopenia Syndrome Virus, China.

    Get PDF
    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tickborne bandavirus mainly transmitted by Haemaphysalis longicornis ticks in East Asia, mostly in rural areas. As of April 2022, the amplifying host involved in the natural transmission of SFTSV remained unidentified. Our epidemiologic field survey conducted in endemic areas in China showed that hedgehogs were widely distributed, had heavy tick infestations, and had high SFTSV seroprevalence and RNA prevalence. After experimental infection of Erinaceus amurensis and Atelerix albiventris hedgehogs with SFTSV, we detected robust but transitory viremias that lasted for 9-11 days. We completed the SFTSV transmission cycle between hedgehogs and nymph and adult H. longicornis ticks under laboratory conditions with 100% efficiency. Furthermore, naive H. longicornis ticks could be infected by SFTSV-positive ticks co-feeding on naive hedgehogs; we confirmed transstadial transmission of SFTSV. Our study suggests that the hedgehogs are a notable wildlife amplifying host of SFTSV in China.Publishe

    Identify Tcea3 as a novel anti-cardiomyocyte hypertrophy gene involved in fatty acid oxidation and oxidative stress

    Get PDF
    BackgroundChronic pressure overload triggers pathological cardiac hypertrophy that eventually leads to heart failure. Effective biomarkers and therapeutic targets for heart failure remain to be defined. The aim of this study is to identify key genes associated with pathological cardiac hypertrophy by combining bioinformatics analyses with molecular biology experiments.MethodsComprehensive bioinformatics tools were used to screen genes related to pressure overload-induced cardiac hypertrophy. We identified differentially expressed genes (DEGs) by overlapping three Gene Expression Omnibus (GEO) datasets (GSE5500, GSE1621, and GSE36074). Correlation analysis and BioGPS online tool were used to detect the genes of interest. A mouse model of cardiac remodeling induced by transverse aortic constriction (TAC) was established to verify the expression of the interest gene during cardiac remodeling by RT-PCR and western blot. By using RNA interference technology, the effect of transcription elongation factor A3 (Tcea3) silencing on PE-induced hypertrophy of neonatal rat ventricular myocytes (NRVMs) was detected. Next, gene set enrichment analysis (GSEA) and the online tool ARCHS4 were used to predict the possible signaling pathways, and the fatty acid oxidation relevant pathways were enriched and then verified in NRVMs. Furthermore, the changes of long-chain fatty acid respiration in NRVMs were detected using the Seahorse XFe24 Analyzer. Finally, MitoSOX staining was used to detect the effect of Tcea3 on mitochondrial oxidative stress, and the contents of NADP(H) and GSH/GSSG were detected by relevant kits.ResultsA total of 95 DEGs were identified and Tcea3 was negatively correlated with Nppa, Nppb and Myh7. The expression level of Tcea3 was downregulated during cardiac remodeling both in vivo and in vitro. Knockdown of Tcea3 aggravated cardiomyocyte hypertrophy induced by PE in NRVMs. GSEA and online tool ARCHS4 predict Tcea3 involved in fatty acid oxidation (FAO). Subsequently, RT-PCR results showed that knockdown of Tcea3 up-regulated Ces1d and Pla2g5 mRNA expression levels. In PE induced cardiomyocyte hypertrophy, Tcea3 silencing results in decreased fatty acid utilization, decreased ATP synthesis and increased mitochondrial oxidative stress.ConclusionOur study identifies Tcea3 as a novel anti-cardiac remodeling target by regulating FAO and governing mitochondrial oxidative stress
    • …
    corecore