1,009 research outputs found

    Temperature-heat uncertainty relation for quantum thermometry

    Full text link
    We investigate the resource theory for temperature estimation. We demonstrate that it is the fluctuation of heat that fundamentally determines temperature precision through the temperature-heat uncertainty relation. Specifically, we find that heat is divided into trajectory heat and correlation heat, which are associated with the heat exchange along thermometer's evolution path and the correlation between the thermometer and the sample, respectively. Based on two type of thermometers, we show that both of these heat terms are resources for enhancing temperature precision. Additionally, we demonstrate that the temperature-heat uncertainty relation is consistent with the well known temperature-energy uncertainty relation in thermodynamics. By clearly distinguishing the resources for enhancing estimation precision, our findings not only explain why various quantum features are crucial for accurate temperature sensing but also provide valuable insights for designing ultrahigh-sensitive quantum thermometers.Comment: 6 pages, 1 figur

    Improved PSO algorithm based on chaos theory and its application to design flood hydrograph

    Get PDF
    AbstractThe deficiencies of basic particle swarm optimization (bPSO) are its ubiquitous prematurity and its inability to seek the global optimal solution when optimizing complex high-dimensional functions. To overcome such deficiencies, the chaos-PSO (COSPSO) algorithm was established by introducing the chaos optimization mechanism and a global particle stagnation-disturbance strategy into bPSO. In the improved algorithm, chaotic movement was adopted for the particles' initial movement trajectories to replace the former stochastic movement, and the chaos factor was used to guide the particles' path. When the global particles were stagnant, the disturbance strategy was used to keep the particles in motion. Five benchmark optimizations were introduced to test COSPSO, and they proved that COSPSO can remarkably improve efficiency in optimizing complex functions. Finally, a case study of COSPSO in calculating design flood hydrographs demonstrated the applicability of the improved algorithm

    Silicon nitride metalenses for unpolarized high-NA visible imaging

    Get PDF
    As one of nanoscale planar structures, metasurface has shown excellent superiorities on manipulating light intensity, phase and/or polarization with specially designed nanoposts pattern. It allows to miniature a bulky optical lens into the chip-size metalens with wavelength-order thickness, playing an unprecedented role in visible imaging systems (e.g. ultrawide-angle lens and telephoto). However, a CMOS-compatible metalens has yet to be achieved in the visible region due to the limitation on material properties such as transmission and compatibility. Here, we experimentally demonstrate a divergent metalens based on silicon nitride platform with large numerical aperture (NA~0.98) and high transmission (~0.8) for unpolarized visible light, fabricated by a 695-nm-thick hexagonal silicon nitride array with a minimum space of 42 nm between adjacent nanoposts. Nearly diffraction-limit virtual focus spots are achieved within the visible region. Such metalens enables to shrink objects into a micro-scale size field of view as small as a single-mode fiber core. Furthermore, a macroscopic metalens with 1-cm-diameter is also realized including over half billion nanoposts, showing a potential application of wide viewing-angle functionality. Thanks to the high-transmission and CMOS-compatibility of silicon nitride, our findings may open a new door for the miniaturization of optical lenses in the fields of optical fibers, microendoscopes, smart phones, aerial cameras, beam shaping, and other integrated on-chip devices.Comment: 16 pages, 7 figure

    tert-Butyl 4-isopropyl-2-oxo-6-phenyl-3,4-dihydro-2H-pyran-3-carboxyl­ate

    Get PDF
    In the title compound, C19H24O4, the six-membered lactone ring adopts an envelope conformation with the tert-butoxy­carbonyl and isopropyl substituents in axial positions, and the phenyl group in an equatorial position. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers

    A Security and Efficient Routing Scheme with Misbehavior Detection in Delay-Tolerant Networks

    Get PDF
    Due to the unique network characteristics, the security and efficient routing in DTNs are considered as two great challenges. In this paper, we design a security and efficient routing scheme, called SER, which integrates the routing decision and the attacks detection mechanisms. In SER scheme, each DTNs node locally maintains a one-dimensional vector table to record the summary information about the contact with other nodes and the trust degree of other nodes. To obtain the global status and the contact relationship among all nodes, the trusted routing table consisting of vectors of all nodes is built in each DTNs node. The method for detecting malicious nodes and selfish nodes is proposed, which exploits the global summary information to analyze the history forwarding behavior of node and judge whether it is a malicious node or selfish node. The routing decision method is proposed based on trust degree of forwarding messages between nodes, which adopts trust degree as relay node selection strategy. Simulation results show that compared with existing schemes SER scheme could detect the attacks behavior of malicious nodes and selfish nodes, at the same time, with higher delivery rate and lower average delivery delay
    corecore