2,197 research outputs found

    Decoding EEG-based Workload Levels Using Spatio-temporal Features Under Flight Environment

    Full text link
    The detection of pilots' mental states is important due to the potential for their abnormal mental states to result in catastrophic accidents. This study introduces the feasibility of employing deep learning techniques to classify different workload levels, specifically normal state, low workload, and high workload. To the best of our knowledge, this study is the first attempt to classify workload levels of pilots. Our approach involves the hybrid deep neural network that consists of five convolutional blocks and one long short-term memory block to extract the significant features from electroencephalography signals. Ten pilots participated in the experiment, which was conducted within the simulated flight environment. In contrast to four conventional models, our proposed model achieved a superior grand--average accuracy of 0.8613, surpassing other conventional models by at least 0.0597 in classifying workload levels across all participants. Our model not only successfully classified workload levels but also provided valuable feedback to the participants. Hence, we anticipate that our study will make the significant contributions to the advancement of autonomous flight and driving leveraging artificial intelligence technology in the future.Comment: 5 pages, 3 figures, 1 table, 1 algorith

    Bilateral ischemic lumbosacral plexopathy from chronic aortoiliac occlusion presenting with progressive paraplegia

    Get PDF
    Spinal cord ischemia is rare but causes significant morbidity and mortality. Spinal cord ischemia has been reported after open and endovascular interventions of the thoracic and abdominal aorta, and, rarely, acute occlusion of aorta from in situ thrombosis or acute embolic occlusion. Acute interruption of the critical blood supply to the spinal cord or root contributes to this devastating neurologic deficit. However, gradually worsening lumbosacral plexopathy and consequent paraplegia related to chronic aortic occlusion is extremely rare. We present a case of a 58-year-old man with progressive lower limb paralysis from atherosclerotic aortoiliac occlusion without history of aortic surgery or evidence of thromboembolism

    The reduced growth due to elevated CO2 concentration hinders the sexual reproduction of mature Northern pipevine (Aristolochia contorta Bunge)

    Get PDF
    The phenology has gained considerably more attention in recent times of climate change. The transition from vegetative to reproductive phases is a critical process in the life history of plants, closely tied to phenology. In an era of climate change, understanding how environmental factors affect this transition is of paramount importance. This study consisted of field surveys and a greenhouse experiment on the reproductive biology of Northern pipevine (Aristolochia contorta Bunge). During field surveys, we investigated the environmental factors and growth characteristics of mature A. contorta, with a focus on both its vegetative and reproductive phases. In its successful flowering during the reproductive phase, A. contorta grew under the conditions of 40% relative light intensity and 24% soil moisture content, and had a vertical rhizome. In the greenhouse experiments, we examined the impact of increased CO2 concentration on the growth and development of 10-year-old A. contorta, considering the effect of rhizome direction. Planted with a vertical rhizome direction, A. contorta exhibited sufficient growth for flowering under ambient CO2 concentrations. In contrast, when planted with a horizontal rhizome direction, it was noted to significantly impede successful growth and flowering under elevated CO2 concentrations. This hindered the process of flowering, highlighting the pivotal role of substantial vegetative growth in achieving successful flowering. Furthermore, we observed a higher number of underground buds and shoots under the conditions of elevated CO2 concentration and a horizontal rhizome direction instead of flowering. Elevated CO2 concentrations also exhibited diverse effects on mature A. contorta’s flower traits, resulting in smaller flower size, shorter longevity, and reduced stigma receptivity, and pollen viability. The study shed light on elevated CO2 concentrations can hinder growth, potentially obstructing sexual reproduction and diminishing genetic diversity

    Mechanistic understanding of perianth traits hindering pollination in Aristolochia contorta Bunge

    Get PDF
    Insects are vital pollinators for angiosperms, playing a crucial role in their reproductive success and fruit production. Aristolochia contorta is a perennial herbaceous vine that occurs in fragmented populations across East Asia. One notable feature of this plant is its trap flower, which employs a unique mechanism to attract, trap, retain, and release insects, ensuring effective pollination. The presence of this trap flower significantly influences the pollination system of A. contorta. Field surveys and pollination experiments were conducted to understand the processes and effectiveness of its pollination mechanism. It was allogamous and was pollinated by the species from Ceratopogonidae. During the insect attraction stage, 11.57% of the flowers contained insects, primarily Ceratopogonidae spp. Most Ceratopogonidae spp. concentrated in few flowers, indicating that although overall attraction might be modest, specific flowers acted as significant focal points for gathering. Trichomes effectively trapped Ceratopogonidae spp. inside flower tubes. In the retention stage, 26.16% of Ceratopogonidae spp. were loaded with pollen grains, but only 7.91% of those exited the flowers in the release stage. The sticky texture of the perianth’s internal cavity posed challenges during this release, leading to adhesion and clogging of the narrow perianth tube. Consequently, a significant portion of Ceratopogonidae spp. became trapped on the perianth wall and perished. This highlights that despite the significant energy and resources invested in flower development, the perianth contributes to the low pollination effectiveness. This study revealed additive factors with negative effects on pollination, including the densely clustered distribution of its pollinators within only a few flowers, insufficient pollen loading onto pollinators, hindered release of entrapped pollinators due to the perianth adhesive surface, and a high rate of defective pollen grains in A. contorta. These factors account for the observed phenomenon of low fruit set (7.7%) and contribute to the diminished rate of sexual reproduction in A. contorta populations. This might lead the species to heavily rely on asexual reproduction, which could potentially lead to gene erosion within populations. The implications of these findings extend to the ecological and conservation aspects, emphasizing the need to understand and conserve the unique pollination system of A. contorta

    Animal Assisted Intervention for Rehabilitation Therapy and Psychotherapy

    Get PDF
    Animal-assisted Intervention (AAI) is a goal-oriented intervention that intentionally includes or incorporates animals in health, education, and human service for the purpose of therapeutic gains in humans. AAI incorporates human-animal teams in formal human service such as Animal-assisted Therapy (AAT) or Animal-assisted Education (AAE). Animal-assisted Activity (AAA) is the informal AAI often conducted on a volunteer basis by the human-animal team for motivational, educational, and recreational purposes. AAI could be used for rehabilitation therapy and psychotherapy for patients with various symptoms. AAI uses animals, mostly dogs, to aid in healing patients holistically. Dogs have an overwhelming gratitude and exuberance for life and this effect on people is astounding. Furthermore, AAI has been researched and its effectiveness on patients’ outcomes and healing is documented. With a soaring trend of the incorporation of complementary therapies into the mainstream of therapy and health care, animal-facilitated therapy has become a popular interest for the therapy team to integrate into a patient’s plan of therapy

    Molecular Design Approach Managing Molecular Orbital Superposition for High Efficiency without Color Shift in Thermally Activated Delayed Fluorescent Organic Lightâ Emitting Diodes

    Full text link
    Molecular design principles of thermally activated delayed fluorescent (TADF) emitters having a high quantum efficiency and a color tuning capability was investigated by synthesizing three TADF emitters with donors at different positions of a benzonitrile acceptor. The position rendering a large overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) enhances the quantum efficiency of the TADF emitter. Regarding the orbital overlap, donor attachments at 2â and 6â positions of the benzonitrile were more beneficial than 3â and 5â substitutions. Moreover, an additional attachment of a weak donor at the 4â position further increased the quantum efficiency without decreasing the emission energy. Therefore, the molecular design strategy of substituting strong donors at the positions allowing a large molecular orbital overlap and an extra weak donor is a good approach to achieve both high quantum efficiency and a slightly increased emission energy.Overlap to emit: The substitution of strong donors at the positions rendering a large HOMOâ LUMO overlap and the addition of a weak donor constitute an effective design approach to realize TADF emitters having high efficiency.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147817/1/chem201805616-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147817/2/chem201805616.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147817/3/chem201805616_am.pd

    Primary Extracranial Meningioma Presenting as a Cheek Mass

    Get PDF
    Meningioma is well known as common disease of the central nervous system, whereas primary extracranial meningioma is rare, representing 1% to 2% of all meningiomas. We have experienced a case of primary extracranial meningioma presenting as a right cheek mass. The tumor was completely excised via a right lateral rhinotomy incision. Histopathologic examination confirmed the diagnosis of primary extracranial meningioma

    Photo-patternable and transparent films using cellulose nanofibers for stretchable origami electronics

    Get PDF
    Substantial progress in flexible or stretchable electronics over the past decade has extensively impacted various technologies such as wearable devices, displays and automotive electronics for smart cars. An important challenge is the reliability of these deformable devices under thermal stress. Different coefficients of thermal expansion (CTE) between plastic substrates and the device components, which include multiple inorganic layers of metals or ceramics, induce thermal stress in the devices during fabrication processes or long-term operations with repetitions of thermal cyclic loading-unloading, leading to device failure and reliability degradation. Here, we report an unconventional approach to form photo-patternable, transparent cellulose nanofiber (CNF) hybrid films as flexible and stretchable substrates to improve device reliability using simultaneous electrospinning and spraying. The electrospun polymeric backbones and sprayed CNF fillers enable the resulting hybrid structure to be photolithographically patternable as a negative photoresist and thermally and mechanically stable, presenting outstanding optical transparency and low CTE. We also formed stretchable origami substrates using the CNF hybrid that are composed of rigid support fixtures and elastomeric joints, exploiting the photo-patternability. A demonstration of transparent organic light-emitting diodes and touchscreen panels on the hybrid film suggests its potential for use in next-generation electronics.ope
    • …
    corecore