3,284 research outputs found

    Bacterial community analysis in upflow multilayer anaerobic reactor (UMAR) treating high-solids organic wastes

    Get PDF
    A novel anaerobic digestion configuration, the upflow multi-layer anaerobic reactor (UMAR), was developed to treat high-solids organic wastes. The UMAR was hypothesized to form multi-layer along depth due to the upflow plug flow; use of a recirculation system and a rotating distributor and baffles aimed to assist treating high-solids influent. The chemical oxygen demand (COD) removal efficiency and methane (CH4) production rate were 89% and 2.10 L CH4/L/day, respectively, at the peak influent COD concentration (110.4 g/L) and organic loading rate (7.5 g COD/L/day). The 454 pyrosequencing results clearly indicated heterogeneous distribution of bacterial communities at different vertical locations (upper, middle, and bottom) of the UMAR. Firmicutes was the dominant (>70%) phylum at the middle and bottom parts, while Deltaproteobacteria and Chloroflexi were only found in the upper part. Potential functions of the bacteria were discussed to speculate on their roles in the anaerobic performance of the UMAR system

    Influence of prohexadione-calcium, trinexapac-ethyl and hexaconazole on lodging characteristic and gibberellin biosynthesis of rice (Oryza sativa L.)

    Get PDF
    We investigated the influence of prohexadione-calcium (Pro-Ca), trinexapac-ethyl (TNE) and hexaconazole (HX) on lodging and gibberellin (GA) biosynthesis pathway of rice cultivar, Hwayeongbyeo. It was observed that these novel synthetic growth retardants suppressed lodging of rice under field conditions through blocking GA biosynthesis pathway. These growth retarding chemicals were applied at basic (20 uM) and elevated (40 uM) rates either 10 days before heading (10 DBH) or 5 days before heading (5 DBH). We found that Pro-Ca, TNE and their combined application (Pro-Ca + TNE) were most effective in decreasing rice length and lodging index, when applied at 10 DBH. Similarly, the endogenous bioactive GA1 contents of rice significantly declined with application of Pro-Ca, TNE and Pro-Ca + TNE, while they were less effected by basic and elevated rates of HX as compared to the control. The growth retardants were more effective in decreasing rice lodging and blocking GA biosynthesis when applied in elevated rates. The levels of the endogenous gibberellins in rice shoots were measured by GC/MS-SIM using 2H2-labeled gibberellins as internal standards. Effect of these synthetic chemicals on growth and GA inhibition were stronger initially but eroded rapidly under field conditions. It was thus concluded that Pro-Ca and TNE were most effective in reducing plant length and suppressing lodging of rice crop under field conditions, where lodging is a major constraint to higher productivity.Key words: Growth retardants, plant growth, gibberellin biosynthesis, lodging index, rice

    Functional analysis of SH3 domain containing ring finger 2 during the myogenic differentiation of quail myoblast cells

    Get PDF
    Objective Owing to the public availability of complete genome sequences, including avian species, massive bioinformatics analyses may be conducted for computational gene prediction and the identification of gene regulatory networks through various informatics tools. However, to evaluate the biofunctional activity of a predicted target gene, in vivo and in vitro functional genomic analyses should be a prerequisite. Methods Due to a lack of quail genomic sequence information, we first identified the partial genomic structure and sequences of the quail SH3 domain containing ring finger 2 (SH3RF2) gene. Subsequently, SH3RF2 was knocked out using clustered regularly interspaced short palindromic repeat/Cas9 technology and single cell-derived SH3RF2 mutant sublines were established to study the biofunctional activity of SH3RF2 in quail myoblast (QM7) cells during muscle differentiation. Results Through a T7 endonuclease I assay and genotyping analysis, we established an SH3RF2 knockout (KO) QM7#4 subline with 61 and 155 nucleotide deletion mutations in SH3RF2. After the induction of myotube differentiation, the expression profiles were analyzed and compared between regular QM7 and SH3RF2 KO QM7#4 cells by global RNA sequencing and bioinformatics analysis. Conclusion We did not detect any statistically significant role of SH3RF2 during myotube differentiation in QM7 myoblast cells. However, additional experiments are necessary to examine the biofunctional activity of SH3RF2 in cell proliferation and muscle growth

    Efficient transgene expression system using a cumate-inducible promoter and Cre-loxP recombination in avian cells

    Get PDF
    Objective Transgenic technology is widely used for industrial applications and basic research. Systems that allow for genetic modification play a crucial role in biotechnology for a number of purposes, including the functional analysis of specific genes and the production of exogenous proteins. In this study, we examined and verified the cumate-inducible transgene expression system in chicken DF1 and quail QM7 cells, as well as loxP element-mediated transgene recombination using Cre recombinase in DF1 cells. Methods After stable transfer of the transgene with piggyBac transposon and transposase, transgene expression was induced by an appropriate concentration of cumate. Additionally, we showed that the transgene can be replaced with additional transgenes by co-transfection with the Cre recombinase expression vector. Results In the cumate-GFP DF1 and QM7 cells, green fluorescent protein (GFP) expression was repressed in the off state in the absence of cumate, and the GFP transgene expression was successfully induced in the presence of cumate. In the cumate-MyoD DF1 cells, MyoD transgene expression was induced by cumate, and the genes controlled by MyoD were upregulated according to the number of days in culture. Additionally, for the translocation experiments, a stable enhanced green fluorescent protein (eGFP)-expressing DF1 cell line transfected with the loxP66-eGFP-loxP71 vector was established, and DsRed-positive and eGFP-negative cells were observed after 14 days of co-transfection with the DsRed transgene and Cre recombinase indicating that the eGFP transgene was excised, and the DsRed transgene was replaced by Cre recombination. Conclusion Transgene induction or replacement cassette systems in avian cells can be applied in functional genomics studies of specific genes and adapted further for efficient generation of transgenic poultry to modulate target gene expression

    Biosynthesis of phenylpropanoids and their protective effect against heavy metals in nitrogen-fixing black locust (Robinia pseudoacacia)

    Get PDF
    Purpose: To examine the effect of various heavy metals (HMs) on phenylpropanoid pathway compounds in Robinia pseudoacacia.Methods: A series of pot culture experiments were performed to understand how the metabolic profile of phenylpropanoid compounds were affected by various HMs, such as redox-active HMs (AgNO3 and CuCl2), and non-redox-active HMs (HgCl2). Phenylpropanoid compound level was evaluated by high performance liquid chromatography.Results: The total phenylpropanoid level in leaves increased significantly in all the treated groups when compared to that in the untreated group (p < 0.05). However, a significant effect on the total phenylpropanoid levels was only found for redox-active HMs (p < 0.05), whereas non-redox-active HMs showed less accumulation. Chlorogenic acid and rutin were the two major phenylpropanoid compounds found after the plants were subjected to redox and non-redox-active HMs stress. However, when compared to these two compounds, the levels of catechin hydrate, epicatechin, p-coumaric acid, kaempferol, and quercetin were lower. Caffeic acid level was significantly decreased in both redox and non-redox-active HMs when compared to that in the control (p < 0.05). In addition, trans-cinnamic acid accumulation was altered based on the types and concentration of HMs.Conclusion: Phenylpropanoid metabolic pathway participated in the HM tolerance process for the protection of R. pseudoacacia from oxidative damage caused by HMs, thus allowing the species to grow in highly HMs-contaminated areas. Keywords: Heavy metals, Non-redox-active metals, Phenylpropanoid compounds, Redox-active metals, Robinia pseudoacaci

    Activation of the EGFR-PI3K-CaM pathway by PRL-1-overexpressing placenta-derived mesenchymal stem cells ameliorates liver cirrhosis via ER stress-dependent calcium

    Get PDF
    Background Cholesterol accumulation and calcium depletion induce hepatic injury via the endoplasmic reticulum (ER) stress response. ER stress regulates the calcium imbalance between the ER and mitochondria. We previously reported that phosphatase of regenerating liver-1 (PRL-1)-overexpressing placenta-derived mesenchymal stem cells (PD-MSCsPRL−1) promoted liver regeneration via mitochondrial dynamics in a cirrhotic rat model. However, the role of PRL-1 in ER stress-dependent calcium is not clear. Therefore, we demonstrated that PD-MSCsPRL−1 improved hepatic functions by regulating ER stress and calcium channels in a rat model of bile duct ligation (BDL). Methods Liver cirrhosis was induced in Sprague–Dawley (SD) rats using surgically induced BDL for 10 days. PD-MSCs and PD-MSCsPRL−1 (2 × 106 cells) were intravenously administered to animals, and their therapeutic effects were analyzed. WB-F344 cells exposed to thapsigargin (TG) were cocultured with PD-MSCs or PD-MSCsPRL−1. Results ER stress markers, e.g., eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP), were increased in the nontransplantation group (NTx) compared to the control group. PD-MSCsPRL−1 significantly decreased ER stress markers compared to NTx and induced dynamic changes in calcium channel markers, e.g., sarco/endoplasmic reticulum Ca2+ -ATPase 2b (SERCA2b), inositol 1,4,5-trisphosphate receptor (IP3R), mitochondrial calcium uniporter (MCU), and voltage-dependent anion channel 1 (VDAC1) (*p < 0.05). Cocultivation of TG-treated WB-F344 cells with PD-MSCsPRL−1 decreased cytosolic calmodulin (CaM) expression and cytosolic and mitochondrial Ca2+ concentrations. However, the ER Ca2+ concentration was increased compared to PD-MSCs (*p  < 0.05). PRL-1 activated phosphatidylinositol-3-kinase (PI3K) signaling via epidermal growth factor receptor (EGFR), which resulted in calcium increase via CaM expression. Conclusions These findings suggest that PD-MSCsPRL−1 improved hepatic functions via calcium changes and attenuated ER stress in a BDL-injured rat model. Therefore, these results provide useful data for the development of next-generation MSC-based stem cell therapy for regenerative medicine in chronic liver disease.This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI17C1050) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2020M3A9B302618221)

    Non-Invasive Epigenetic Detection of Fetal Trisomy 21 in First Trimester Maternal Plasma

    Get PDF
    BACKGROUND: Down syndrome (DS) is the most common known aneuploidy, caused by an extra copy of all or part of chromosome 21. Fetal-specific epigenetic markers have been investigated for non-invasive prenatal detection of fetal DS. The phosphodiesterases gene, PDE9A, located on chromosome 21q22.3, is completely methylated in blood (M-PDE9A) and unmethylated in the placenta (U-PDE9A). Therefore, we estimated the accuracy of non-invasive fetal DS detection during the first trimester of pregnancy using this tissue-specific epigenetic characteristic of PDE9A. METHODOLOGY/PRINCIPAL FINDINGS: A nested, case-control study was conducted using maternal plasma samples collected from 108 pregnant women carrying 18 DS and 90 normal fetuses (each case was matched with 5 controls according to gestational weeks at blood sampling). All pregnancies were singletons at or before 12 weeks of gestation between October 2008 and May 2009. The maternal plasma levels of M-PDE9A and U-PDE9A were measured by quantitative methylation-specific polymerase chain reaction. M-PDE9A and U-PDE9A levels were obtained in all samples and did not differ between male and female fetuses. M-PDE9A levels did not differ between the DS cases and controls (1854.3 vs 2004.5 copies/mL; P = 0.928). U-PDE9A levels were significantly elevated in women with DS fetuses compared with controls (356.8 vs 194.7 copies/mL, P<0.001). The sensitivities of U-PDE9A level and the unmethylation index of PDE9A for non-invasive fetal DS detection were 77.8% and 83.3%, respectively, with a 5% false-positive rate. In the risk assessment for fetal DS, the adjusted odds ratios of U-PDE9A level and UI were 46.2 [95% confidence interval: 7.8-151.6] and 63.7 [95% confidence interval: 23.2-206.7], respectively. CONCLUSIONS: Our findings suggest that U-PDE9A level and the unmethylation index of PDE9A may be useful biomarkers for non-invasive fetal DS detection during the first trimester of pregnancy, regardless of fetal gender
    corecore