23 research outputs found

    Metabolic evaluation of children with global developmental delay

    Get PDF
    Global developmental delay (GDD) is a relatively common early-onset chronic neurological condition, which may have prenatal, perinatal, postnatal, or undetermined causes. Family history, physical and neurological examinations, and detailed history of environmental risk factors might suggest a specific disease. However, diagnostic laboratory tests, brain imaging, and other evidence-based evaluations are necessary in most cases to elucidate the causes. Diagnosis of GDD has recently improved because of remarkable advances in genetic technology, but this is an exhaustive and expensive evaluation that may not lead to therapeutic benefits in the majority of GDD patients. Inborn metabolic errors are one of the main targets for the treatment of GDD, although only a small proportion of GDD patients have this type of error. Nevertheless, diagnosis is often challenging because the phenotypes of many genetic or metabolic diseases often overlap, and their clinical spectra are much broader than currently known. Appropriate and cost-effective strategies including up-to-date information for the early identification of the "treatable" causes of GDD are needed for the development of well-timed therapeutic applications with the potential to improve neurodevelopmental outcomes

    Rapid Multiplexed Proteomic Screening for Primary Immunodeficiency Disorders From Dried Blood Spots

    Get PDF
    Background: Primary immunodeficiency disorders (PIDD) comprise a group of life-threatening congenital diseases characterized by absent or impaired immune responses. Despite the fact that effective, curative treatments are available with optimal clinical outcomes when diagnosed early, newborn screening does not exist for the majority of these diseases due to the lack of detectable, specific biomarkers or validated methods for population-based screening. Peptide immunoaffinity enrichment coupled with selected reaction monitoring mass spectrometry (immuno-SRM) is a sensitive proteomic assay, involving antibody-mediated peptide capture, that allows for concurrent quantification of multiple analytes. This assay has promise for use in potential newborn screening of PIDDs that lead to diminished or absent target proteins in the majority of cases.Objective: To determine and evaluate if a multiplex assay based on immuno-SRM is able to reliably and precisely distinguish affected patients with X-linked agammaglobulinemia (XLA), Wiskott-Aldrich Syndrome (WAS), and CD3Ï”-associated severe combined immunodeficiency (SCID) from one another and from unaffected normal control dried blood spot (DBS) samples.Methods: We performed a blinded, multiplexed analysis of proteolytically-generated peptides from WASp, BTK, and CD3Ï” (for WAS, XLA, and SCID, respectively) in DBS samples from 42 PIDD patients, 40 normal adult controls, and 62 normal newborns. The peptide ATPase copper transporting protein (ATP7B) 1056 was simultaneously monitored for quality assurance purposes.Results: The immuno-SRM assays reliably quantified the target peptides in DBS and accurately distinguished affected patients from normal controls. Analysis of signature peptides found statistically significant reduction or absence of peptide levels in affected patients compared to control groups in each case (WASp and BTK: p = 0.0001, SCID: p = 0.05). Intra and inter-assay precision ranged from 11 to 22% and 11 to 43% respectively; linearity (1.39–2000 fmol peptide), and stability (≀ 0.09% difference in 72 h) showed high precision for the multiplexed assay. Inter-laboratory assay comparison showed high concordance for measured peptide concentrations, with R2 linearity ≄ 0.97 for the WASp 274, CD3Ï” 197, BTK 407, and ATP7B 1056 peptides.Conclusion: Immuno-SRM-based quantification of proteotypic peptides from WASp, BTK, and CD3Ï” in DBS distinguishes relevant PIDD cases from one another and from controls, raising the possibility of employing this approach for large-scale multiplexed newborn screening of selective PIDDs

    Efficacy, Safety Profile, and Immunogenicity of Alglucosidase Alfa Produced at the 4,000-Liter Scale in US Children and Adolescents with Pompe Disease: ADVANCE, A Phase IV, Open-Label, Prospective Study

    No full text
    Purpose: Pompe disease results from lysosomal acid alpha-glucosidase (GAA) deficiency and its associated glycogen accumulation and muscle damage. Alglucosidase alfa (recombinant human GAA (rhGAA)) received approval in 2006 as a treatment for Pompe disease at the 160 L production scale. In 2010, larger-scale rhGAA was approved for patients up to 8 years old without cardiomyopathy. NCT01526785 evaluated 4,000 L rhGAA efficacy/safety in US infantile- or late-onset Pompe disease (IOPD, LOPD) patients up to 1 year old transitioned from 160 L rhGAA.MethodsA total of 113 patients (87 with IOPD; 26 with LOPD) received 4,000 L rhGAA for 52 weeks dosed the same as previous 160 L rhGAA. Efficacy was calculated as the percentage of patients stable/improved at week 52 (without death, new requirement for invasive ventilation, left ventricular mass z-score increase \u3e1 if baseline was \u3e2, upright forced vital capacity decrease \u3e/=15% predicted, or Gross Motor Function Measure-88 decrease \u3e/=8 percentage points). Safety evaluation included an extensio

    In vitro correction of disorders of lysosomal transport by microvesicles derived from baculovirus-infected Spodoptera cells.

    No full text
    Infection of Spodoptera frugiperda (Sf9) cells by baculovirus (BV) is well established for transgene expression of soluble proteins, but few correctly folded transmembrane proteins have been so produced. We here report the use of the BV/Sf9 (BVES) method for the expression and transfer, via microvesicles, of the exclusive lysosomal exporters for cystine and sialic acid, human cystinosin and sialin. These proteins and their mRNA are released into the culture medium as very low-density microvesicles (~1.05g/ml), which do not label for lysobisphosphatidic acid. The presence of the human transgene proteins in the vesicles was confirmed by western blotting and confirmed and quantified by mass spectrometry. Addition of vesicles to cultures of human fibroblast lines deficient in either cystinosin or sialin produced a progressive depletion of stored lysosomal cystine or sialic acid, respectively. The depletion effect was slow (T1/2 ~48h), saturable (down to ~40% of initial after 4days) and stable (>one week). Surprisingly, BV infection of Spodoptera appeared to induce expression and release into microvesicles of the insect orthologue of cystinosin, but not of sialin. We conclude that BVES is an effective method to express and transfer functional transmembrane proteins so as to study their properties in mammalian cells, and has a generic potential for transport protein replacement therapy

    The co‐occurrence of Wilson disease and X‐linked agammaglobulinemia in one family highlights the promising diagnostic potential of proteolytic analysis

    No full text
    Abstract Background We report the first case of a family with co‐occurrence of Wilson disease (WD), an autosomal recessive disorder of copper metabolism, and X‐linked agammaglobulinemia (XLA), a primary immunodeficiency disorder (PIDD) that features marked reduction in circulating B lymphocytes and serum immunoglobulins. Methods and Results Through utilization of a multiplexed biomarker peptide quantification method known as the immuno‐SRM assay, we were able to simultaneously and independently identify which family members are affected with WD and which are affected with XLA using dried blood spots (DBS). Conclusion Being able to delineate multiple diagnoses using proteolytic analysis from a single DBS provides support for implementation of this methodology for clinical diagnostic use as well as large‐scale population screening, such as newborn screening (NBS). This could allow for early identification and treatment of affected individuals with WD or XLA, which have been shown to reduce morbidity and decrease mortality in these two populations
    corecore