9,105 research outputs found
Magnetic Quantum Phase Transitions in Kondo Lattices
The identification of magnetic quantum critical points in heavy fermion
metals has provided an ideal setting for experimentally studying quantum
criticality. Motivated by these experiments, considerable theoretical efforts
have recently been devoted to reexamine the interplay between Kondo screening
and magnetic interactions in Kondo lattice systems. A local quantum critical
picture has emerged, in which magnetic interactions suppress Kondo screening
precisely at the magnetic quantum critical point (QCP). The Fermi surface
undergoes a large reconstruction across the QCP and the coherence scale of the
Kondo lattice vanishes at the QCP. The dynamical spin susceptibility exhibits
scaling and non-trivial exponents describe the temperature and
frequency dependence of various physical quantities. These properties are to be
contrasted with the conventional spin-density-wave (SDW) picture, in which the
Kondo screening is not suppressed at the QCP and the Fermi surface evolves
smoothly across the phase transition. In this article we discuss recent
microscopic studies of Kondo lattices within an extended dynamical mean field
theory (EDMFT). We summarize the earlier work based on an analytical
-expansion renormalization group method, and expand on the more
recent numerical results. We also discuss the issues that have been raised
concerning the magnetic phase diagram. We show that the zero-temperature
magnetic transition is second order when double counting of the RKKY
interactions is avoided in EDMFT.Comment: 10 pages, 4 figures; references added; as published in JPCM in early
September, except for the correction to the legend for Figure
Atomically thin three-dimensional membranes of van der Waals semiconductors by wafer-scale growth
We report wafer-scale growth of atomically thin, three-dimensional (3D) van der Waals (vdW) semiconductor membranes. By controlling the growth kinetics in the near-equilibrium limit during metal-organic chemical vapor depositions of MoS2 and WS2 monolayer (ML) crystals, we have achieved conformal ML coverage on diverse 3D texture substrates, such as periodic arrays of nanoscale needles and trenches on quartz and SiO2/Si substrates. The ML semiconductor properties, such as channel resistivity and photoluminescence, are verified to be seamlessly uniform over the 3D textures and are scalable to wafer scale. In addition, we demonstrated that these 3D films can be easily delaminated from the growth substrates to form suspended 3D semiconductor membranes. Our work suggests that vdW ML semiconductor films can be useful platforms for patchable membrane electronics with atomic precision, yet large areas, on arbitrary substrates.11Ysciescopu
Global Phase Diagram of the Kondo Lattice: From Heavy Fermion Metals to Kondo Insulators
We discuss the general theoretical arguments advanced earlier for the T=0
global phase diagram of antiferromagnetic Kondo lattice systems, distinguishing
between the established and the conjectured. In addition to the well-known
phase of a paramagnetic metal with a "large" Fermi surface (P_L), there is also
an antiferromagnetic phase with a "small" Fermi surface (AF_S). We provide the
details of the derivation of a quantum non-linear sigma-model (QNLsM)
representation of the Kondo lattice Hamiltonian, which leads to an effective
field theory containing both low-energy fermions in the vicinity of a Fermi
surface and low-energy bosons near zero momentum. An asymptotically exact
analysis of this effective field theory is made possible through the
development of a renormalization group procedure for mixed fermion-boson
systems. Considerations on how to connect the AF_S and P_L phases lead to a
global phase diagram, which not only puts into perspective the theory of local
quantum criticality for antiferromagnetic heavy fermion metals, but also
provides the basis to understand the surprising recent experiments in
chemically-doped as well as pressurized YbRh2Si2. We point out that the AF_S
phase still occurs for the case of an equal number of spin-1/2 local moments
and conduction electrons. This observation raises the prospect for a global
phase diagram of heavy fermion systems in the Kondo-insulator regime. Finally,
we discuss the connection between the Kondo breakdown physics discussed here
for the Kondo lattice systems and the non-Fermi liquid behavior recently
studied from a holographic perspective.Comment: (v3) leftover typos corrected. (v2) Published version. 32 pages, 4
figures. Section 7, on the connection between the Kondo lattice systems and
the holographic models of non-Fermi liquid, is expanded. (v1) special issue
of JLTP on quantum criticalit
Room temperature near-ultraviolet emission from In-rich InGaN/GaN multiple quantum wells
We grew In-rich InGaNGaN multiple quantum wells (MQWs) using growth interruption (GI) by metalorganic chemical vapor deposition. The quality of overgrown InGaNGaN QW layers in MQWs was largely affected by the crystalline quality and interfacial abruptness of the underlying QW layer. Introduction of 10 s GI was very effective in improving the crystalline quality and interfacial abruptness of InGaN QW layers, and we grew a ten periods of 1-nm -thick In-rich InGaNGaN MQW with 10 s GI and obtained a strong near-ultraviolet (UV) emission (~390 nm) at room temperature. We believe that use of less than 1-nm -thick In-rich InGaN MQW can be a candidate for near-UV source, which might replace the conventional low-indium content (<10%), thicker InGaN QW layer.open313
Frustration and the Kondo effect in heavy fermion materials
The observation of a separation between the antiferromagnetic phase boundary
and the small-large Fermi surface transition in recent experiments has led to
the proposal that frustration is an important additional tuning parameter in
the Kondo lattice model of heavy fermion materials. The introduction of a Kondo
(K) and a frustration (Q) axis into the phase diagram permits us to discuss the
physics of heavy fermion materials in a broader perspective. The current
experimental situation is analysed in the context of this combined "QK" phase
diagram. We discuss various theoretical models for the frustrated Kondo
lattice, using general arguments to characterize the nature of the -electron
localization transition that occurs between the spin liquid and heavy Fermi
liquid ground-states. We concentrate in particular on the Shastry--Sutherland
Kondo lattice model, for which we establish the qualitative phase diagram using
strong coupling arguments and the large- expansion. The paper closes with
some brief remarks on promising future theoretical directions.Comment: To appear in a special issue of JLT
Electrospray on superhydrophobic nozzles treated with argon and oxygen plasma
We report on a simple process to fabricate electrohydrodynamic spraying devices with superhydrophobic nozzles. These devices are useful, among other things, in mass spectrometry and printing technology. The superhydrophobic nozzle is created by roughening the surface of the polyfluorotetraethylene (PFTE) by argon and oxygen plasma treatment. We have developed a polymer-based electrospray device with a flat, superhydrophobic nozzle capable of maintaining a high contact angle and stable jetting
Hidden Magnetism and Quantum Criticality in the Heavy Fermion Superconductor CeRhIn5
With understood exceptions, conventional superconductivity does not coexist
with long-range magnetic order[1]. In contrast, unconventional
superconductivity develops near a boundary separating magnetically ordered and
magnetically disordered phases[2,3]. A maximum in the superconducting
transition temperature Tc develops where this boundary extrapolates to T=0 K,
suggesting that fluctuations associated with this magnetic quantum-critical
point are essential for unconventional superconductivity[4,5]. Invariably
though, unconventional superconductivity hides the magnetic boundary when T <
Tc, preventing proof of a magnetic quantum-critical point[5]. Here we report
specific heat measurements of the pressure-tuned unconventional superconductor
CeRhIn5 in which we find a line of quantum-phase transitions induced inside the
superconducting state by an applied magnetic field. This quantum-critical line
separates a phase of coexisting antiferromagnetism and superconductivity from a
purely unconventional superconducting phase and terminates at a quantum
tetracritical point where the magnetic field completely suppresses
superconductivity. The T->0 K magnetic field-pressure phase diagram of CeRhIn5
is well described with a theoretical model[6,7] developed to explain
field-induced magnetism in the high-Tc cuprates but in which a clear
delineation of quantum-phase boundaries has not been possible. These
experiments establish a common relationship among hidden magnetism, quantum
criticality and unconventional superconductivity in cuprate and heavy-electron
systems, such as CeRhIn5.Comment: journal reference adde
- …