9,426 research outputs found

    Size Ramsey Numbers Involving Double Stars and Brooms

    Get PDF
    The topics of this thesis lie in graph Ramsey theory. Given two graphs G and H, by the Ramsey theorem, there exist infinitely many graphs F such that if we partition the edges of F into two sets, say Red and Blue, then either the graph induced by the red edges contains G or the graph induced by the blue edges contains H. The minimum order of F is called the Ramsey number and the minimum of the size of F is called the size Ramsey number. They are denoted by r(G, H) and ˆr(G, H), respectively. We will investigate size Ramsey numbers involving double stars and brooms

    Temperature Dependence of the Effective Bag Constant and the Radius of a Nucleon in the Global Color Symmetry Model of QCD

    Full text link
    We study the temperature dependence of the effective bag constant, the mass, and the radius of a nucleon in the formalism of the simple global color symmetry model in the Dyson-Schwinger equation approach of QCD with a Gaussian-type effective gluon propagator. We obtain that, as the temperature is lower than a critical value, the effective bag constant and the mass decrease and the radius increases with the temperature increasing. As the critical temperature is reached, the effective bag constant and the mass vanish and the radius tends to infinity. At the same time, the chiral quark condensate disappears. These phenomena indicate that the deconfinement and the chiral symmetry restoration phase transitions can take place at high temperature. The dependence of the critical temperature on the interaction strength parameter in the effective gluon propagator of the approach is given.Comment: 10 pages, 9 figure

    Cancellation of divergences in unitary gauge calculation of H→γγH \to \gamma \gamma process via one W loop, and application

    Full text link
    Following the thread of R. Gastmans, S. L. Wu and T. T. Wu, the calculation in the unitary gauge for the H→γγH \to \gamma \gamma process via one W loop is repeated, without the specific choice of the independent integrated loop momentum at the beginning. We start from the 'original' definition of each Feynman diagram, and show that the 4-momentum conservation and the Ward identity of the W-W-photon vertex can guarantee the cancellation of all terms among the Feynman diagrams which are to be integrated to give divergences higher than logarithmic. The remaining terms are to the most logarithmically divergent, hence is independent from the set of integrated loop momentum. This way of doing calculation is applied to H→γZH \to \gamma Z process via one W loop in the unitary gauge, the divergences proportional to MZ2/M3M_Z^2/M^3 including quadratic ones are all cancelled, and terms proportional to MZ2/M3M_Z^2/M^3 are shown to be zero. The way of dealing with the quadratic divergences proportional to MZ2/M3M_Z^2/M^3 in H→γZH \to \gamma Z has subtle implication on the employment on the Feynman rules especially when those rules can lead to high level divergences. So calculation without integration on all the δ\delta functions until have to is a more proper or maybe necessary way of the employment of the Feynman rules.Comment: 1 figure, 34 pages (updated

    Fractional Variational Iteration Method for Fractional Cauchy Problems

    Get PDF

    Deshkan Ziibi Conservation Impact Bond Replication

    Get PDF
    Description of the work that I did the summer and its respective outcomes
    • …
    corecore